Display options
Share it on

Toxicol Rep. 2021 Feb 15;8:366-375. doi: 10.1016/j.toxrep.2021.02.007. eCollection 2021.

Chloroquine ameliorates bone loss induced by d-galactose in male rats via inhibition of ERK associated osteoclastogenesis and antioxidant effect.

Toxicology reports

Mohamed A Aziz Mahmoud, Dalia O Saleh, Marwa M Safar, Azza M Agha, Mahmoud M Khattab

Affiliations

  1. Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt.
  2. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
  3. Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Egypt.

PMID: 33665135 PMCID: PMC7905189 DOI: 10.1016/j.toxrep.2021.02.007

Abstract

Chloroquine (CQ); a lysosomotropic agent used for decade ago as anti-malarial, was tested against aging induced osteoporosis. Osteoporosis in male rats was induced using d-galactose (D-gal) as a reducing sugar at a dose of 200 mg/kg/day; i.p. Osteoporotic rats were orally treated with CQ (10 mg/kg/day) for four successive weeks. Bone densitometry of tibia and femur were evaluated. Bone formation biomarkers; osteoprotegrin (OPG), bone specific alkaline phosphatse (BALP), and osteocalcin (OCN), and bone resorption biomarker; receptor activator of nuclear factor kappa-B ligand (RANKL), cathepsin-k (CTSK), tartrate-resistant acid phosphatase (TRAP) were estimated. Moreover, the expression of extracellular regulated kinase (ERK) in bone was determined. CQ ameliorated the bone detrimental changes induced by d-galactose. It enhanced bone health as revealed by measurement of bone densitometry, halted the activation of receptor activator of nuclear factor kappa-B ligand (RANKL) and reduced bone manifestation of ERK. Furthermore, CQ treatment abated serum cathepsin-k (CTSK) and serum tartrate-resistant acid phosphatase (TRAP) thus inhibited osteoclastogenesis and consequently restored the RANKL/OPG ratio. CQ demonstrated an antioxidant effect in bone where it increased both Catalase (CAT) and Superoxide dismutase (SOD). These CQ preserving effect in rats treated with d-galactose were confirmed by the histopathological examination. The present study points to the potential therapeutic effect of CQ as anti-osteoporotic agent possibly through its antioxidant effects and suppression of ERK associated osteoclastogenesis.

© 2021 The Authors.

Keywords: Chloroquine; ERK; OPG; Osteoporosis; RANKL; Rats

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. J Endocrinol Invest. 2014 Nov;37(11):1127-30 - PubMed
  2. Endocrinology. 2000 Nov;141(11):4295-308 - PubMed
  3. Mol Cell Biochem. 2014 Nov;396(1-2):249-55 - PubMed
  4. Inflammopharmacology. 2015 Oct;23(5):231-69 - PubMed
  5. Redox Biol. 2017 Apr;11:73-81 - PubMed
  6. Biomed Pharmacother. 2019 Aug;116:109017 - PubMed
  7. Exp Gerontol. 2017 Sep;95:16-25 - PubMed
  8. Methods Enzymol. 1984;105:121-6 - PubMed
  9. Clin Exp Dermatol. 2009 Jul;34(5):570-5 - PubMed
  10. Bone. 2001 Mar;28(3):282-9 - PubMed
  11. Biochim Biophys Acta. 1972 Aug 28;276(2):350-62 - PubMed
  12. Bone. 2011 Oct;49(4):623-35 - PubMed
  13. Afr J Med Med Sci. 1998 Mar-Jun;27(1-2):63-4 - PubMed
  14. Front Physiol. 2020 Jul 02;11:694 - PubMed
  15. J Immunol. 2002 Dec 1;169(11):6427-34 - PubMed
  16. J Hum Hypertens. 2009 Jul;23(7):451-5 - PubMed
  17. Toxicol Rep. 2019 Sep 22;6:963-974 - PubMed
  18. Int J Mol Sci. 2018 Oct 01;19(10): - PubMed
  19. J Clin Chem Clin Biochem. 1977 Dec;15(12):715-8 - PubMed
  20. Clin Chim Acta. 2005 Oct;360(1-2):81-6 - PubMed
  21. Biomolecules. 2020 Jan 13;10(1): - PubMed
  22. J Clin Invest. 2013 Feb;123(2):666-81 - PubMed
  23. Bone Res. 2019 Oct 3;7:28 - PubMed
  24. Bone. 2015 Oct;79:222-32 - PubMed
  25. Endocrinology. 2001 Sep;142(9):4047-54 - PubMed
  26. Int J Mol Sci. 2019 Jul 22;20(14): - PubMed
  27. Cell Res. 2013 Feb;23(2):300-2 - PubMed
  28. Nat Rev Cancer. 2014 Nov;14(11):709-21 - PubMed
  29. J Biol Chem. 2004 Apr 30;279(18):18361-9 - PubMed
  30. Crit Rev Oral Biol Med. 2004 Jan 1;15(2):64-81 - PubMed
  31. Physiol Res. 2015;64(1):61-70 - PubMed
  32. Biochem Pharmacol. 2016 Apr 15;106:82-93 - PubMed
  33. Autophagy. 2012 Apr;8(4):445-544 - PubMed
  34. Toxicol Rep. 2020 Jan 27;7:209-216 - PubMed
  35. Int J Mol Med. 2017 Sep;40(3):703-712 - PubMed
  36. J Exp Bot. 2018 Jun 19;69(14):3413-3424 - PubMed
  37. J Immunol. 2002 May 15;168(10):5303-9 - PubMed
  38. Food Chem Toxicol. 2013 Nov;61:240-7 - PubMed
  39. Inflammation. 2013 Feb;36(1):103-9 - PubMed
  40. Mol Neurobiol. 2018 Oct;55(10):8188-8202 - PubMed
  41. Endocrinol Metab Clin North Am. 2005 Dec;34(4):1015-30, xi - PubMed
  42. Chin J Physiol. 2014 Jun 30;57(3):121-7 - PubMed
  43. Am J Clin Pathol. 1972 Oct;58(4):376-82 - PubMed
  44. J Clin Invest. 2014 Jan;124(1):297-310 - PubMed
  45. Toxicol Rep. 2020 Aug 15;7:1001-1007 - PubMed
  46. J Bone Miner Res. 2011 Nov;26(11):2682-94 - PubMed
  47. Arthritis Res Ther. 2005;7(1):R65-70 - PubMed
  48. Int Rev Cytol. 2004;237:57-89 - PubMed
  49. Indian J Pharmacol. 2012 May;44(3):345-50 - PubMed
  50. J Pathog. 2018 Dec 2;2018:3912090 - PubMed
  51. Bone. 2016 Jan;82:42-9 - PubMed
  52. Biogerontology. 2007 Jun;8(3):373-81 - PubMed
  53. Autophagy. 2018;14(8):1435-1455 - PubMed
  54. Pak J Biol Sci. 2008 Jul 1;11(13):1696-701 - PubMed
  55. Sports Med. 2005;35(6):473-83 - PubMed
  56. J Biol Chem. 2010 Mar 5;285(10):6913-21 - PubMed
  57. Biochem Soc Trans. 2013 Feb 1;41(1):127-33 - PubMed
  58. Cell Biol Int. 2014 May;38(5):655-62 - PubMed
  59. Immunol Lett. 2013 Jun;153(1-2):50-7 - PubMed

Publication Types