Display options
Share it on

J Physiol. 2021 Mar 16; doi: 10.1113/JP280922. Epub 2021 Mar 16.

Contrasting recruitment of skin-associated adipose depots during cold challenge of mouse and human.

The Journal of physiology

Ildiko Kasza, Jens-Peter Kühn, Henry Völzke, Diego Hernando, Yaohui G Xu, John W Siebert, Angela Lf Gibson, C-L Eric Yen, David W Nelson, Ormond A MacDougald, Nicole E Richardson, Dudley W Lamming, Philip A Kern, C M Alexander

Affiliations

  1. McArdle Laboratory for Cancer Research, University of Wisconsin-Madison.
  2. Institute and Policlinic of Diagnostic and Interventional Radiology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Germany.
  3. Institute of Community Medicine, University of Greifswald, Germany.
  4. Departments of Radiology, University of Wisconsin-School of Medicine and Public Health.
  5. Medical Physics, University of Wisconsin-School of Medicine and Public Health.
  6. Dermatology, University of Wisconsin-School of Medicine and Public Health.
  7. Surgery, University of Wisconsin-School of Medicine and Public Health.
  8. Department of Nutritional Sciences, University of Wisconsin-Madison.
  9. Department of Molecular & Integrative Physiology, University of Michigan.
  10. Medicine, University of Wisconsin-School of Medicine and Public Health.
  11. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.
  12. Department of Internal Medicine, University of Kentucky, Lexington.

PMID: 33724479 PMCID: PMC8443702 DOI: 10.1113/JP280922

Abstract

KEY POINTS: Several distinct strategies produce and conserve heat to maintain body temperature of mammals, each associated with unique physiologies, with consequence for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally- and genetically-induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding function and regulation. For human, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of β-adrenergic induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to β-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: A corresponding β-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex, and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defense. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues. This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Keywords: BAT brown adipose tissue; Dermal white adipose tissue; MRI magnetic resonance imaging; SAF skin-associated fat; UCP1; brown adipose tissue; dWAT; dWAT dermal white adipose tissue; heat production; iWAT inguinal (mouse subcutaneous) white adipose tissue; lipolysis; obesity; scWAT; scWAT subcutaneous white adipose tissue; skin-associated fat; subcutaneous white adipose tissue; thermogenesis; vWAT visceral white adipose tissue; β-adrenergic response

References

  1. Nat Metab. 2019;1(3):360-370 - PubMed
  2. JCI Insight. 2018 Aug 9;3(15): - PubMed
  3. Am J Physiol Endocrinol Metab. 2001 Nov;281(5):E1110-4 - PubMed
  4. J Cell Physiol. 2015 Oct;230(10):2311-7 - PubMed
  5. Nutr Res Rev. 2014 Jun;27(1):63-93 - PubMed
  6. Nat Commun. 2020 Jan 31;11(1):624 - PubMed
  7. Diabetes. 2005 Nov;54(11):3190-7 - PubMed
  8. Nat Commun. 2016 Feb 01;7:10495 - PubMed
  9. Cell Metab. 2015 Feb 3;21(2):262-273 - PubMed
  10. Sci Rep. 2018 Mar 16;8(1):4677 - PubMed
  11. Nature. 2018 Aug;560(7716):102-106 - PubMed
  12. Nat Methods. 2011 Dec 28;9(1):57-63 - PubMed
  13. Trends Endocrinol Metab. 2016 Jan;27(1):1-10 - PubMed
  14. Metabolism. 2001 Apr;50(4):425-35 - PubMed
  15. Endocrinology. 2015 Jul;156(7):2368-70 - PubMed
  16. Int J Epidemiol. 2011 Apr;40(2):294-307 - PubMed
  17. Cell Metab. 2019 Jan 8;29(1):27-37 - PubMed
  18. Biol Sex Differ. 2012 May 31;3(1):13 - PubMed
  19. Diabetes. 2014 Nov;63(11):3785-97 - PubMed
  20. J Biol Chem. 2009 Feb 13;284(7):4292-9 - PubMed
  21. Cell Metab. 2017 Jan 10;25(1):166-181 - PubMed
  22. Front Immunol. 2018 Feb 06;9:164 - PubMed
  23. Sci Rep. 2019 Jun 17;9(1):8658 - PubMed
  24. Nat Med. 2017 Dec;23(12):1454-1465 - PubMed
  25. PLoS One. 2018 Nov 29;13(11):e0205226 - PubMed
  26. Cell. 2012 Jul 20;150(2):366-76 - PubMed
  27. Cell Metab. 2016 Jan 12;23(1):165-78 - PubMed
  28. Eur J Histochem. 2010 Nov 25;54(4):e48 - PubMed
  29. Cell Rep. 2013 Dec 12;5(5):1403-12 - PubMed
  30. Exp Dermatol. 2014 Sep;23(9):629-31 - PubMed
  31. Sci Rep. 2018 Nov 2;8(1):16268 - PubMed
  32. J Obes. 2015;2015:473430 - PubMed
  33. Mol Metab. 2021 Feb;44:101144 - PubMed
  34. Adv Exp Med Biol. 2017;1043:29-51 - PubMed
  35. Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Jan;1864(1):91-103 - PubMed
  36. Cell Metab. 2015 Oct 6;22(4):546-59 - PubMed
  37. Front Physiol. 2013 Mar 14;4:34 - PubMed
  38. Mol Metab. 2019 Sep;27:47-61 - PubMed
  39. J Clin Invest. 2013 Aug;123(8):3395-403 - PubMed
  40. Curr Atheroscler Rep. 2013 Oct;15(10):361 - PubMed
  41. Nat Med. 2013 Oct;19(10):1252-63 - PubMed
  42. Trends Endocrinol Metab. 2017 Sep;28(9):669-683 - PubMed
  43. Bone. 2019 Jan;118:32-41 - PubMed
  44. Mol Aspects Med. 2013 Feb;34(1):1-11 - PubMed
  45. J Biol Chem. 2009 Jul 24;284(30):19961-73 - PubMed
  46. Cell Metab. 2016 Sep 13;24(3):434-446 - PubMed
  47. N Engl J Med. 2009 Apr 9;360(15):1500-8 - PubMed
  48. Diabetes. 2016 May;65(5):1179-89 - PubMed
  49. Cell Metab. 2016 Aug 9;24(2):210-22 - PubMed
  50. JCI Insight. 2016 Aug 18;1(13):e87146 - PubMed
  51. Diabetes. 2017 May;66(5):1237-1246 - PubMed
  52. Radiology. 2017 Sep;284(3):706-716 - PubMed
  53. J Clin Endocrinol Metab. 2014 Dec;99(12):E2772-9 - PubMed
  54. Am J Physiol Regul Integr Comp Physiol. 2016 Mar 30;310(10):R999-R1009 - PubMed
  55. Proc Nutr Soc. 2009 Nov;68(4):401-7 - PubMed
  56. J Clin Invest. 2013 Aug;123(8):3404-8 - PubMed
  57. PLoS Genet. 2014 Aug 07;10(8):e1004514 - PubMed
  58. Endocr Rev. 2000 Dec;21(6):697-738 - PubMed
  59. Int J Mol Sci. 2018 May 08;19(5): - PubMed
  60. Biochim Biophys Acta. 2014 Jul;1837(7):1075-82 - PubMed
  61. J Lipid Res. 2014 Nov;55(11):2276-86 - PubMed
  62. Cell Stem Cell. 2016 Dec 1;19(6):738-751 - PubMed
  63. Am J Physiol Endocrinol Metab. 2000 May;278(5):E941-8 - PubMed
  64. Cell Metab. 2018 Jan 9;27(1):68-83 - PubMed
  65. Trends Endocrinol Metab. 2015 May;26(5):231-7 - PubMed
  66. Nat Med. 2017 Jul;23(7):829-838 - PubMed
  67. Exp Dermatol. 2018 Jun;27(6):589-602 - PubMed
  68. J Clin Invest. 2019 Oct 1;129(10):3978-3989 - PubMed
  69. J Lipid Res. 2015 Nov;56(11):2061-9 - PubMed
  70. J Clin Invest. 2019 Dec 2;129(12):5327-5342 - PubMed
  71. Int J Obes (Lond). 2010 Jun;34(6):989-1000 - PubMed
  72. Exp Dermatol. 2016 Apr;25(4):258-62 - PubMed
  73. Horm Mol Biol Clin Investig. 2014 Jul;19(1):57-74 - PubMed
  74. J Clin Invest. 2016 May 2;126(5):1704-16 - PubMed
  75. J Clin Endocrinol Metab. 2004 Jun;89(6):2548-56 - PubMed
  76. J Biol Chem. 2014 Jan 31;289(5):2482-8 - PubMed
  77. Int J Obes (Lond). 2010 Jun;34(6):949-59 - PubMed
  78. Nat Rev Endocrinol. 2014 Jan;10(1):24-36 - PubMed

Publication Types

Grant support