Display options
Share it on

iScience. 2021 Feb 04;24(3):102138. doi: 10.1016/j.isci.2021.102138. eCollection 2021 Mar 19.

Thermodynamic analysis of DNA hybridization signatures near mitochondrial DNA deletion breakpoints.

iScience

Lakshmi Narayanan Lakshmanan, Zhuangli Yee, Barry Halliwell, Jan Gruber, Rudiyanto Gunawan

Affiliations

  1. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
  2. Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
  3. Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
  4. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
  5. Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.
  6. Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA.

PMID: 33665557 PMCID: PMC7900216 DOI: 10.1016/j.isci.2021.102138

Abstract

Broad evidence in the literature supports double-strand breaks (DSBs) as initiators of mitochondrial DNA (mtDNA) deletion mutations. While DNA misalignment during DSB repair is commonly proposed as the mechanism by which DSBs cause deletion mutations, details such as the specific DNA repair errors are still lacking. Here, we used DNA hybridization thermodynamics to infer the sequence lengths of mtDNA misalignments that are associated with mtDNA deletions. We gathered and analyzed 9,921 previously reported mtDNA deletion breakpoints in human, rhesus monkey, mouse, rat, and

© 2021 The Author(s).

Keywords: Bioinformatics; Molecular Genetics; Sequence Analysis

Conflict of interest statement

The authors declare no competing interests.

References

  1. J Biol Chem. 2003 Nov 7;278(45):43893-6 - PubMed
  2. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7952-6 - PubMed
  3. Nat Struct Mol Biol. 2015 Mar;22(3):230-7 - PubMed
  4. Nat Genet. 1992 Apr;1(1):11-5 - PubMed
  5. Mol Cell. 2015 Dec 17;60(6):860-72 - PubMed
  6. Nucleic Acids Res. 1994 Mar 25;22(6):1075-8 - PubMed
  7. Nucleic Acids Res. 2009 Jul;37(13):4218-26 - PubMed
  8. Acta Neuropathol. 2013 Feb;125(2):245-56 - PubMed
  9. Mol Biol Cell. 2016 Jan 15;27(2):223-35 - PubMed
  10. Nat Genet. 2006 May;38(5):515-7 - PubMed
  11. Aging Cell. 2018 Oct;17(5):e12814 - PubMed
  12. Nucleic Acids Res. 2013 Jun;41(11):5799-816 - PubMed
  13. Nucleic Acids Res. 2016 Jun 20;44(11):5313-29 - PubMed
  14. J Biol Chem. 1996 Nov 1;271(44):27536-43 - PubMed
  15. PLoS One. 2010 Dec 20;5(12):e15687 - PubMed
  16. PLoS Genet. 2016 Nov 10;12(11):e1006410 - PubMed
  17. J Biol Chem. 2014 Oct 24;289(43):29975-93 - PubMed
  18. Hum Mol Genet. 2009 Mar 15;18(6):1028-36 - PubMed
  19. Nucleic Acids Res. 2015 Apr 30;43(8):4098-108 - PubMed
  20. Acta Neuropathol. 2016 Aug;132(2):277-288 - PubMed
  21. Cold Spring Harb Perspect Biol. 2012 Dec 01;4(12): - PubMed
  22. J Pediatr. 1990 Oct;117(4):599-602 - PubMed
  23. Ann N Y Acad Sci. 2002 Apr;959:412-23 - PubMed
  24. Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19408-13 - PubMed
  25. PLoS Comput Biol. 2015 May 21;11(5):e1004183 - PubMed
  26. Cancer Detect Prev. 2004;28(2):119-26 - PubMed
  27. Nat Commun. 2019 Feb 15;10(1):759 - PubMed
  28. Nat Genet. 2008 Mar;40(3):275-9 - PubMed
  29. Nucleic Acids Res. 2012 Sep;40(16):7606-21 - PubMed
  30. PLoS Comput Biol. 2009 Nov;5(11):e1000572 - PubMed
  31. Nat Rev Mol Cell Biol. 2012 Oct;13(10):659-71 - PubMed
  32. Nucleic Acids Res. 2004 Jun 04;32(10):3053-64 - PubMed
  33. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8319-25 - PubMed
  34. BMC Genomics. 2014 Aug 13;15:677 - PubMed
  35. Nucleic Acids Res. 1999 Aug 15;27(16):3348-54 - PubMed
  36. J Biol Chem. 2012 Apr 27;287(18):14545-56 - PubMed
  37. N Engl J Med. 1989 May 18;320(20):1293-9 - PubMed
  38. Ann Neurol. 1989 Dec;26(6):699-708 - PubMed
  39. Hum Mol Genet. 2005 Apr 1;14(7):893-902 - PubMed
  40. Cardiovasc Res. 2009 Jun 1;82(3):448-57 - PubMed
  41. Trends Genet. 2008 Nov;24(11):529-38 - PubMed
  42. Trends Genet. 2010 Aug;26(8):340-3 - PubMed
  43. Hum Mol Genet. 1995 Aug;4(8):1327-30 - PubMed
  44. Biochim Biophys Acta. 2010 Aug;1797(8):1378-88 - PubMed
  45. Nucleic Acids Res. 1999 Feb 15;27(4):1198-204 - PubMed
  46. Mol Cell. 2017 Feb 2;65(3):527-538.e6 - PubMed
  47. Nucleic Acids Res. 2015 Feb 18;43(3):1659-70 - PubMed
  48. Nucleic Acids Res. 1990 Feb 11;18(3):561-7 - PubMed
  49. PLoS One. 2012;7(4):e35271 - PubMed
  50. Trends Genet. 2004 Sep;20(9):393-8 - PubMed
  51. J Cell Physiol. 2016 Jan;231(1):15-24 - PubMed
  52. Nucleic Acids Res. 2016 Apr 7;44(6):e56 - PubMed
  53. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2258-63 - PubMed
  54. Lancet. 2002 Oct 26;360(9342):1323-5 - PubMed
  55. Nucleic Acids Res. 2007;35(10):3238-51 - PubMed
  56. Nucleic Acids Res. 2000 Oct 1;28(19):3793-800 - PubMed
  57. Annu Rev Biochem. 2016 Jun 2;85:133-60 - PubMed
  58. Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2972-7 - PubMed
  59. Nucleic Acids Res. 2016 May 19;44(9):4200-10 - PubMed
  60. Nat Genet. 1995 Dec;11(4):376-81 - PubMed
  61. Biogerontology. 2012 Oct;13(5):557-64 - PubMed

Publication Types