Display options
Share it on

Nat Commun. 2021 Mar 02;12(1):1384. doi: 10.1038/s41467-021-21559-9.

Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins.

Nature communications

Liwei Chen, Jung Eun Park, Peter Paa, Priscilla D Rajakumar, Hong-Ting Prekop, Yi Ting Chew, Swathi N Manivannan, Wei Leong Chew

Affiliations

  1. Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
  2. Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore. [email protected].

PMID: 33654077 PMCID: PMC7925527 DOI: 10.1038/s41467-021-21559-9

Abstract

Many genetic diseases are caused by single-nucleotide polymorphisms. Base editors can correct these mutations at single-nucleotide resolution, but until recently, only allowed for transition edits, addressing four out of twelve possible DNA base substitutions. Here, we develop a class of C:G to G:C Base Editors to create single-base genomic transversions in human cells. Our C:G to G:C Base Editors consist of a nickase-Cas9 fused to a cytidine deaminase and base excision repair proteins. Characterization of >30 base editor candidates reveal that they predominantly perform C:G to G:C editing (up to 90% purity), with rAPOBEC-nCas9-rXRCC1 being the most efficient (mean 15.4% and up to 37% without selection). C:G to G:C Base Editors target cytidine in WCW, ACC or GCT sequence contexts and within a precise three-nucleotide window of the target protospacer. We further target genes linked to dyslipidemia, hypertrophic cardiomyopathy, and deafness, showing the therapeutic potential of these base editors in interrogating and correcting human genetic diseases.

References

  1. Nat Med. 2020 Apr;26(4):535-541 - PubMed
  2. Sci Adv. 2017 Aug 30;3(8):eaao4774 - PubMed
  3. Nature. 2019 May;569(7756):433-437 - PubMed
  4. Nat Biotechnol. 2018 Nov;36(10):946-949 - PubMed
  5. Nat Biotechnol. 2016 Mar;34(3):339-44 - PubMed
  6. Pharmacogenet Genomics. 2010 Jan;20(1):64-9 - PubMed
  7. Nat Biotechnol. 2017 May;35(5):475-480 - PubMed
  8. Gene. 2015 Dec 1;573(2):188-97 - PubMed
  9. Nat Biotechnol. 2020 May;38(5):620-628 - PubMed
  10. Methods Enzymol. 2014;546:119-38 - PubMed
  11. Nat Biotechnol. 2018 Oct;36(9):888-893 - PubMed
  12. Cell. 1995 Sep 8;82(5):701-8 - PubMed
  13. Nature. 2014 Mar 6;507(7490):62-7 - PubMed
  14. Nat Biotechnol. 2018 Oct;36(9):843-846 - PubMed
  15. Nat Methods. 2016 Dec;13(12):1029-1035 - PubMed
  16. Nucleic Acids Res. 1995 May 11;23(9):1597-603 - PubMed
  17. Nature. 2019 Dec;576(7785):149-157 - PubMed
  18. Trends Biochem Sci. 2019 Feb;44(2):91-94 - PubMed
  19. J Cell Biochem. 2010 Jan 1;109(1):1-6 - PubMed
  20. Nature. 2017 Nov 23;551(7681):464-471 - PubMed
  21. Nat Chem Biol. 2012 Sep;8(9):751-8 - PubMed
  22. Genome Res. 2004 Jun;14(6):1188-90 - PubMed
  23. Nat Biotechnol. 2018 Nov;36(10):977-982 - PubMed
  24. Nat Biotechnol. 2019 Mar;37(3):224-226 - PubMed
  25. Nature. 2016 Apr 20;533(7603):420-4 - PubMed
  26. Science. 2016 Sep 16;353(6305): - PubMed
  27. Am J Hum Genet. 2005 Dec;77(6):945-57 - PubMed
  28. Nat Rev Genet. 2018 Dec;19(12):770-788 - PubMed
  29. DNA Repair (Amst). 2015 Jun;30:90-103 - PubMed
  30. Nat Biotechnol. 2021 Jan;39(1):41-46 - PubMed
  31. DNA Repair (Amst). 2014 Jul;19:14-26 - PubMed
  32. Nat Biotechnol. 2019 Oct;37(10):1145-1148 - PubMed
  33. Nature. 2019 Jul;571(7764):275-278 - PubMed

Substances

MeSH terms

Publication Types