Display options
Share it on

Adv Exp Med Biol. 2021;1286:163-181. doi: 10.1007/978-3-030-55035-6_12.

Targeting Stem Cells in Chronic Inflammatory Diseases.

Advances in experimental medicine and biology

Mari van de Vyver, Yigael S L Powrie, Carine Smith

Affiliations

  1. Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa. [email protected].
  2. Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
  3. Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa.

PMID: 33725353 DOI: 10.1007/978-3-030-55035-6_12

Abstract

Mesenchymal stem cell (MSC) dysfunction is a serious complication in ageing and age-related inflammatory diseases such as type 2 diabetes mellitus. Inflammation and oxidative stress-induced cellular senescence alter the immunomodulatory ability of MSCs and hamper their pro-regenerative function, which in turn leads to an increase in disease severity, maladaptive tissue damage and the development of comorbidities. Targeting stem/progenitor cells to restore their function and/or protect them against impairment could thus improve healing outcomes and significantly enhance the quality of life for diabetic patients. This review discusses the dysregulation of MSCs' immunomodulatory capacity in the context of diabetes mellitus and focuses on intervention strategies aimed at MSC rejuvenation. Research pertaining to the potential therapeutic use of either pharmacological agents (NFкB antagonists), natural products (phytomedicine) or biological agents (exosomes, probiotics) to improve MSC function is discussed and an overview of the most pertinent methodological considerations given. Based on in vitro studies, numerous anti-inflammatory agents, antioxidants and biological agents show tremendous potential to revitalise MSCs. An integrated systems approach and a thorough understanding of complete disease pathology are however required to identify feasible candidates for in vivo targeting of MSCs.

Keywords: Accelerated ageing; Antioxidant; Exosome; Extracellular vesicles; Mesenchymal stem cells; Probiotic; Type 2 diabetes

References

  1. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25:1822–1832 - PubMed
  2. Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI et al (2019) Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci 20(18):4472. https://doi.org/10.3390/ijms20184472 - PubMed
  3. Burton DGA, Faragher RGA (2018) Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology 19:447–459 - PubMed
  4. Powrie YSL, Smith C (2018) Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: therapeutic potential? J Neuroinflammation 15:289. https://doi.org/10.1186/s12974-018-1324-0 - PubMed
  5. Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402 - PubMed
  6. Bracken MB (2009) Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med 102:120–122 - PubMed
  7. Smith C (2018) Natural antioxidants in prevention of accelerated ageing: a departure from conventional paradigms required. J Physiol Biochem 74:549–558 - PubMed
  8. Fernández-Quintela A, Carpéné C, Fernández M, Aguirre L, Milton-Laskibar I, Contreras J et al (2016) Anti-obesity effects of resveratrol: comparison between animal models and humans. J Physiol Biochem 73:417–429 - PubMed
  9. Cásedas G, Bennett AC, González-Burgos E, Gómez-Serranillos MP, López V, Smith C (2019) Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible compounding? Inflammopharmacology 27:189–197 - PubMed
  10. Niesler CU, Van de Vyver M, Myburgh KH (2019) Cellular regenerative therapy for acquired noncongenital musculoskeletal disorders. S Afr Med J 109:58–63 - PubMed
  11. Pérez LM, de Lucas B, Gálvez BG (2018) Unhealthy stem cells: when health conditions upset stem cell properties. Cell Physiol Biochem 46:1999–2016 - PubMed
  12. van de Vyver M (2017) Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev 26:1042–1053 - PubMed
  13. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, al KD (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317 - PubMed
  14. Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6:2884–2889 - PubMed
  15. Fitzsimmons REB, Mazurek MS, Soos A, Simmons CA (2018) Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int 2018:8031718. https://doi.org/10.1155/2018/8031718 - PubMed
  16. El-Sayed M, El-Feky MA, El-Amir MI, Hasan AS, Tag-Adeen M, Urata Y et al (2019) Immunomodulatory effect of mesenchymal stem cells: cell origin and cell quality variations. Mol Biol Rep 46:1157–1165 - PubMed
  17. Im GI (2017) Bone marrow-derived stem/stromal cells and adipose tissue-derived stem/stromal cells: their comparative efficacies and synergistic effects. J Biomed Mater Res A 105:2640–2648 - PubMed
  18. Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H et al (2018) Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 9:168. https://doi.org/10.1186/s13287-018-0914-1 - PubMed
  19. Ahmed M, Ffrench-Constant C (2016) Extracellular matrix regulation of stem cell behavior. Curr Stem Cell Rep 2:197–206 - PubMed
  20. Keung AJ, Kumar S, Schaffer DV (2010) Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu Rev Cell Dev Biol 26:533–556. https://doi.org/10.1146/annurev-cellbio-100109-104042 - PubMed
  21. Li D, Zhou J, Chowdhury F, Cheng J, Wang N, Wang F (2011) Role of mechanical factors in fate decisions of stem cells. Regen Med 6:229–240 - PubMed
  22. Spees JL, Lee RH, Gregory CA (2016) Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 7:125. https://doi.org/10.1186/s13287-016-0363-7 - PubMed
  23. Yun MH (2015) Changes in regenerative capacity through lifespan. Int J Mol Sci 16:25392–25432 - PubMed
  24. Vono R, Jover Garcia E, Spinetti G, Madeddu P (2018) Oxidative stress in mesenchymal stem cell senescence: regulation by coding and noncoding RNAs. Antioxid Redox Signal 29:864–879 - PubMed
  25. Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J (2017) Senescence of mesenchymal stem cells (Review). Int J Mol Med 39:775–782 - PubMed
  26. Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ et al (2014) Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep 4:7144. https://doi.org/10.1038/srep07144 - PubMed
  27. Khong SML, Lee M, Kosaric N, Khong DM, Dong Y, Hopfner U et al (2019) Single-cell transcriptomics of human mesenchymal stem cells reveal age-related cellular subpopulation depletion and impaired regenerative function. Stem Cells 37:240–246 - PubMed
  28. Fathi E, Charoudeh HN, Sanaat Z, Farahzadi R (2019) Telomere shortening as a hallmark of stem cell senescence. Stem Cell Investig 6:7. https://doi.org/10.21037/sci.2019.02.04 - PubMed
  29. He L, Zheng Y, Wan Y, Song J (2014) A shorter telomere is the key factor in preventing cultured human mesenchymal stem cells from senescence escape. Histochem Cell Biol 142:257–267 - PubMed
  30. Brandl A, Meyer M, Bechmann V, Nerlich M, Angele P (2011) Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res 317:1541–1547 - PubMed
  31. Wang L, Yu X, Liu JP (2017) Telomere damage response and low-grade inflammation. Adv Exp Med Biol 1024:213–224 - PubMed
  32. Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP et al (2016) Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev 25:55–69 - PubMed
  33. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24:1246–1256 - PubMed
  34. Pérez-Panero AJ, Ruiz-Muñoz M, Cuesta-Vargas AI, Gónzalez-Sánchez M (2019) Prevention, assessment, diagnosis and management of diabetic foot based on clinical practice guidelines: a systematic review. Medicine (Baltimore) 98:e16877. https://doi.org/10.1097/MD.0000000000016877 - PubMed
  35. Saeedi P, Petersohn I, Salpea P, Saeedi P, Basit A, Besançon S et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843 - PubMed
  36. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5:e10088. https://doi.org/10.1371/journal.pone.0010088 - PubMed
  37. Duffy MM, Ritter T, Ceredig R, Griffin MD (2011) Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther 2:34. https://doi.org/10.1186/scrt75 - PubMed
  38. Haddad R, Saldanha-Araujo F (2014) Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? Biomed Res Int 2014:216806. https://doi.org/10.1155/2014/216806 - PubMed
  39. Abbasi A, Froushani SMA, Delirezh N, Mostafaei A (2018) Caffeine alters the effects of bone marrow-derived mesenchymal stem cells on neutrophils. Adv Clin Exp Med 27:463–468 - PubMed
  40. Espinosa G, Plaza A, Schenffeldt A, Alarcón P, Gajardo G, Uberti B et al (2020) Equine bone marrow-derived mesenchymal stromal cells inhibit reactive oxygen species production by neutrophils. Vet Immunol Immunopathol 221:109975. https://doi.org/10.1016/j.vetimm.2019.109975 - PubMed
  41. Mittal SK, Mashaghi A, Amouzegar A, Li M, Foulsham W, Sahu SK et al (2018) Mesenchymal stromal cells inhibit neutrophil effector functions in a murine model of ocular inflammation. Invest Ophthalmol Vis Sci 59:1191–1198 - PubMed
  42. Mumaw JL, Schmiedt CW, Breidling S, Sigmund A, Norton NA, Thoreson M et al (2015) Feline mesenchymal stem cells and supernatant inhibit reactive oxygen species production in cultured feline neutrophils. Res Vet Sci 103:60–69 - PubMed
  43. Cho D-I, Kim MR, Jeong H, Jeong HC, Jeong MH, Yoon SH et al (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46:e70. https://doi.org/10.1038/emm.2013.135 - PubMed
  44. Kruger MJ, Conradie MM, Conradie M, van de Vyver M (2018) ADSC-conditioned media elicit an ex vivo anti-inflammatory macrophage response. J Mol Endocrinol 61:173–184 - PubMed
  45. Li D, Wang C, Chi C, Wang Y, Zhao J, Fang J et al (2016) Bone marrow mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory reactions in macrophages and endothelial cells. Mediat Inflamm 2016:2631439. https://doi.org/10.1155/2016/2631439 - PubMed
  46. Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Görgülü A (2018) Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther 9:286. https://doi.org/10.1186/s13287-018-1039-2 - PubMed
  47. Takizawa N, Okubo N, Kamo M, Chosa N, Mikami T, Suzuki K et al (2017) Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture. Exp Cell Res 358:411–420 - PubMed
  48. Zheng YH, Deng YY, Lai W, Zheng SY, Bian HN, Liu ZA et al (2018) Effect of bone marrow mesenchymal stem cells on the polarization of macrophages. Mol Med Rep 17:4449–4459 - PubMed
  49. van de Vyver M, Niesler C, Myburgh KH, Ferris WF (2016) Delayed wound healing and dysregulation of IL6/STAT3 signalling in MSCs derived from pre-diabetic obese mice. Mol Cell Endocrinol 426:1–10 - PubMed
  50. Mehrbani Azar Y, Green R, Niesler CU, van de Vyver M (2018) Antioxidant preconditioning improves the paracrine responsiveness of bone marrow mesenchymal stem cells to diabetic wound fluid. Stem Cells Dev 27(23):1646–1657 - PubMed
  51. Yin Y, Hao H, Cheng Y, Zang L, Liu J, Gao J et al (2018) Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death Dis 9:760. https://doi.org/10.1038/s41419-018-0801-9 - PubMed
  52. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F et al (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26:151–162 - PubMed
  53. Mehrbani Azar Y, Kruger MJ, de Swardt D, Maartens M, Seboko AM, Ferris WF et al (2020) Model for studying the effects of chronic metabolic disease on endogenous bone marrow stem cell populations. Methods Mol Biol 2138:119–134 - PubMed
  54. Mehrbani Azar Y, Niesler CU, van de Vyver M (2020) Ex vivo antioxidant preconditioning improves the survival rate of bone marrow stem cells in the presence of wound fluid. Wound Repair Regen 28(4):506–516. https://doi.org/10.1111/wrr.12815 . [Epub ahead of print] - PubMed
  55. Borodkina AV, Deryabin PI, Giukova AA, Nikolsky NN (2018) “Social Life” of senescent cells: what is SASP and why study it? Acta Nat 10:4–14 - PubMed
  56. Ali F, Khan M, Khan SN, Riazuddin S (2016) N-Acetyl cysteine protects diabetic mouse derived mesenchymal stem cells from hydrogen-peroxide-induced injury: a novel hypothesis for autologous stem cell transplantation. J Chin Med Assoc 79:122–129 - PubMed
  57. Kong C-M, Subramanian A, Biswas A, Stunkel W, Chong YS, Bongso A et al (2019) Changes in stemness properties, differentiation potential, oxidative stress, senescence and mitochondrial function in Wharton’s Jelly stem cells of umbilical cords of mothers with gestational diabetes mellitus. Stem Cell Rev Rep 15:415–426 - PubMed
  58. Alicka M, Major P, Wysocki M, Marycz K (2019) Adipose-derived mesenchymal stem cells isolated from patients with Type 2 diabetes show reduced “Stemness” through an altered secretome profile, impaired anti-oxidative protection, and mitochondrial dynamics deterioration. J Clin Med 8(6) pii: E765. https://doi.org/10.3390/jcm80607655 - PubMed
  59. Chang TC, Hsu MF, Wu KK (2015) High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS One 10:e0126537. https://doi.org/10.1371/journal.pone.0126537 - PubMed
  60. Cheng NC, Hsieh TY, Lai HS, Young TH (2016) High glucose-induced reactive oxygen species generation promotes stemness in human adipose-derived stem cells. Cytotherapy 18:371–383 - PubMed
  61. Oh JY, Choi GE, Lee HJ, Jung YH, Ko SH, Chae CW et al (2018) High glucose-induced reactive oxygen species stimulates human mesenchymal stem cell migration through snail and EZH2-dependent E-cadherin repression. Cell Physiol Biochem 46:1749–1767 - PubMed
  62. Dhanasekaran M, Indumathi S, Rajkumar JS, Sudarsanam D (2013) Effect of high glucose on extensive culturing of mesenchymal stem cells derived from subcutaneous fat, omentum fat and bone marrow. Cell Biochem Funct 31:20–29 - PubMed
  63. Liu Y, Li Y, Nan LP, Wang F, Zhou SF, Wang JC et al (2020) The effect of high glucose on the biological characteristics of nucleus pulposus-derived mesenchymal stem cells. Cell Biochem Funct 38(2):130–140 - PubMed
  64. Wang J, Wang B, Li Y, Wang D, Lingling E, Bai Y et al (2013) High glucose inhibits osteogenic differentiation through the BMP signaling pathway in bone mesenchymal stem cells in mice. EXCLI J 12:584–597 - PubMed
  65. Al-Qarakhli AMA, Yusop N, Waddington RJ, Moseley R (2019) Effects of high glucose conditions on the expansion and differentiation capabilities of mesenchymal stromal cells derived from rat endosteal niche. BMC Mol Cell Biol 20:51. https://doi.org/10.1186/s12860-019-0235-y - PubMed
  66. Lin W-C, Shih P-H, Wang W, Wu CH, Hsia SM, Wang HJ et al (2015) Inhibitory effects of high stability fucoxanthin on palmitic acid-induced lipid accumulation in human adipose-derived stem cells through modulation of long non-coding RNA. Food Funct 6:2215–2223 - PubMed
  67. Carpéné C, Pejenaute H, Del Moral R, Boulet N, Hijona E, Andrade F et al (2018) The dietary antioxidant piceatannol inhibits adipogenesis of human adipose mesenchymal stem cells and limits glucose transport and lipogenic activities in adipocytes. Int J Mol Sci 19(7) pii: E2081. https://doi.org/10.3390/ijms19072081 - PubMed
  68. Hong W, Park J, Yun W, Kang PJ, Son D, Jang J et al (2018) Inhibitory effect of celastrol on adipogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun 507:236–241 - PubMed
  69. Gu Z, Jiang J, Xia Y, Yue X, Yan M, Tao T et al (2013) p21 is associated with the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells from non-obese diabetic mice. Exp Clin Endocrinol Diabetes 121:607–613 - PubMed
  70. Li X, Liu N, Gu B, Hu W, Li Y, Guo B et al (2018) BMAL1 regulates balance of osteogenic-osteoclastic function of bone marrow mesenchymal stem cells in type 2 diabetes mellitus through the NF-κB pathway. Mol Biol Rep 45:1691–1704 - PubMed
  71. Ko KI, Syverson AL, Kralik RM, Choi J, DerGarabedian BP, Chen C et al (2019) Diabetes-induced NF-κB dysregulation in skeletal stem cells prevents resolution of inflammation. Diabetes 68:2095–2106 - PubMed
  72. Zhang N, Valentine JM, Zhou Y, Li ME, Zhang Y, Bhattacharya A et al (2017) Sustained NFκB inhibition improves insulin sensitivity but is detrimental to muscle health. Aging Cell 16:847–858 - PubMed
  73. Li CJ, Sun LY, Pang CY (2015) Synergistic protection of N-acetylcysteine and ascorbic acid 2-phosphate on human mesenchymal stem cells against mitoptosis, necroptosis and apoptosis. Sci Rep 5:9819. https://doi.org/10.1038/srep09819 - PubMed
  74. Watanabe J, Yamada M, Niibe K, Zhang M, Kondo T, Ishibashi M et al (2018) Preconditioning of bone marrow-derived mesenchymal stem cells with N-acetyl-L-cysteine enhances bone regeneration via reinforced resistance to oxidative stress. Biomaterials 185:25–38 - PubMed
  75. Saulite L, Jekabsons K, Klavins M, Muceniece R, Riekstina U (2019) Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. Phytomedicine 53:86–95 - PubMed
  76. Hu C, Li L (2019) The application of resveratrol to mesenchymal stromal cell-based regenerative medicine. Stem Cell Res Ther 10:307. https://doi.org/10.1186/s13287-019-1412-9 - PubMed
  77. Chen TS, Kuo CH, Day CH, Pan LF, Chen RJ, Chen BC et al (2019) Resveratrol increases stem cell function in the treatment of damaged pancreas. J Cell Physiol 234:20443–20452 - PubMed
  78. Fellous T, De Maio F, Kalkan H, Carannante B, Boccella S, Petrosino S et al (2020) Phytocannabinoids promote viability and functional adipogenesis of bone marrow-derived mesenchymal stem cells through different molecular targets. Biochem Pharmacol 175:113859. https://doi.org/10.1016/j.bcp.2020.113859 - PubMed
  79. Li M, Yu L, She T, Gan Y, Liu F, Hu Z et al (2012) Astragaloside IV attenuates Toll-like receptor 4 expression via NF-κB pathway under high glucose condition in mesenchymal stem cells. Eur J Pharmacol 696:203–209 - PubMed
  80. Wang T, Yan R, Xu X, Li X, Cao L, Gao L et al (2019) Curcumin represses adipogenic differentiation of human bone marrow mesenchymal stem cells via inhibiting Kruppel-like factor 15 expression. Acta Histochem 121:253–259 - PubMed
  81. Martin H (2010) Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res 690:57–63 - PubMed
  82. Huang F, Yao Y, Wu J, Liu Q, Zhang J, Pu X et al (2017) Curcumin inhibits gastric cancer-derived mesenchymal stem cells mediated angiogenesis by regulating NF-κB/VEGF signaling. Am J Transl Res 9:5538–5547 - PubMed
  83. Mohanty C, Pradhan J (2020) A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing. Mater Sci Eng C Mater Biol Appl 111:110751. https://doi.org/10.1016/j.msec.2020.110751 - PubMed
  84. Mantzorou M, Pavlidou E, Vasios G, Tsagalioti E, Giaginis C (2018) Effects of curcumin consumption on human chronic diseases: a narrative review of the most recent clinical data. Phytother Res 32:957–975 - PubMed
  85. Campbell MS, Ouyang A, Krishnakumar IM, Charnigo RJ, Westgate PM, Fleenor BS (2019) Influence of enhanced bioavailable curcumin on obesity-associated cardiovascular disease risk factors and arterial function: a double-blinded, randomized, controlled trial. Nutrition 62:135–139 - PubMed
  86. Gorabi AM, Kiaie N, Hajighasemi S, Jamialahmadi T, Majeed M, Sahebkar A (2019) The effect of curcumin on the differentiation of mesenchymal stem cells into mesodermal lineage. Molecules 24:22). pii: E4029. https://doi.org/10.3390/molecules24224029 - PubMed
  87. Li Y, Zhang ZZ (2018) Sustained curcumin release from PLGA microspheres improves bone formation under diabetic conditions by inhibiting the reactive oxygen species production. Drug Des Devel Ther 12:1453–1466 - PubMed
  88. Bennett AC, Van Camp A, López V, Smith C (2018) Sceletium tortuosum may delay chronic disease progression via alkaloid-dependent antioxidant or anti-inflammatory action. J Physiol Biochem 74:539–547 - PubMed
  89. Jun T, Liancai Z, Bochu W (2007) Effects of Quercetin on DNA damage induced by copper ion. Int J Pharmacol 3:19–26 - PubMed
  90. Liu ZQ (2014) Antioxidants may not always be beneficial to health. Nutrition 30:131–133 - PubMed
  91. Caldarelli I, Speranza MC, Bencivenga D, Tramontano A, Borgia A, Pirozzi AV et al (2015) Resveratrol mimics insulin activity in the adipogenic commitment of human bone marrow mesenchymal stromal cells. Int J Biochem Cell Biol 60:60–72 - PubMed
  92. Kim TJ, Byun JS, Kwon HS, Kim DY (2018) Cellular toxicity driven by high-dose vitamin C on normal and cancer stem cells. Biochem Biophys Res Commun 497:347–353. https://doi.org/10.1016/j.bbrc.2018.02.083 - PubMed
  93. Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35:851–858 - PubMed
  94. Casado-Díaz A, Quesada-Gómez JM, Dorado G (2020) Extracellular vesicles derived from Mesenchymal Stem Cells (MSC) in regenerative medicine: applications in skin wound healing. Front Bioeng Biotechnol 8:146. https://doi.org/10.3389/fbioe.2020.00146 - PubMed
  95. Shi R, Jin Y, Hu W, Lian W, Cao C, Han S et al (2020) Exosomes derived from mmu_circ_0000250-modified ADSCs promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1 mediated autophagy. Am J Physiol Cell Physiol 318(5):C848–C856 - PubMed
  96. Qiang L, Sample A, Liu H, Wu X, He YY (2017) Epidermal SIRT1 regulates inflammation, cell migration, and wound healing. Sci Rep 7:14110. https://doi.org/10.1038/s41598-017-14371-3 - PubMed
  97. Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z et al (2020) The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids 19:814–826 - PubMed
  98. Liu S, Mahairaki V, Bai H, Ding Z, Li J, Witwer KW et al (2019) Highly purified human extracellular vesicles produced by stem cells alleviate aging cellular phenotypes of senescent human cells. Stem Cells 37:779–790 - PubMed
  99. Zhu Y, Jia Y, Wang Y, Xu J, Chai Y (2019) Impaired bone regenerative effect of exosomes derived from bone marrow mesenchymal stem cells in Type 1 diabetes. Stem Cells Transl Med 8:593–605 - PubMed
  100. Rahman MJ, Regn D, Bashratyan R, Dai YD (2014) Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes 63:1008–1020 - PubMed
  101. Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J et al (2015) LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 13:308. https://doi.org/10.1186/s12967-015-0642-6 - PubMed
  102. Kol A, Foutouhi S, Walker NJ, Kong NT, Weimer BC, Borjesson DL (2014) Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions. Stem Cells Dev 23:1831–1843 - PubMed
  103. Han N, Jia L, Su Y, Du J, Guo L, Luo Z et al (2019) Lactobacillus reuteri extracts promoted wound healing via PI3K/AKT/β-catenin/TGFβ1 pathway. Stem Cell Res Ther 10:243. https://doi.org/10.1186/s13287-019-1324-8 - PubMed
  104. Kang HK, Min S-K, Jung SY, Jung K, Jang DH, Kim OB et al (2011) The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo. Int J Mol Med 28:1001–1011 - PubMed
  105. Kim K, Park S, Kim H, Min S, Ku S, Seo J et al (2020) Enterococcus faecium L-15 extract enhances the self-renewal and proliferation of mouse skin-derived precursor cells. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-020-09635-w - PubMed
  106. Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P et al (2015) Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526:719–722 - PubMed
  107. Weiss GA, Hennet T (2017) Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci 74:2959–2977 - PubMed
  108. Uçkay I, Pires D, Agostinho A, Guanziroli N, Öztürk M, Bartolone P et al (2017) Enterococci in orthopaedic infections: who is at risk getting infected? J Infect 75:309–314 - PubMed
  109. Anvarinejad M, Pouladfar G, Japoni A et al (2016) Diabetic foot infections: antibiotic susceptibility patterns and determination of antibiotic cross-resistance in clinical isolates of enterococcus species during 2012–2014 in Shiraz, Iran. Arch Pediatr Infect Dis 5. https://doi.org/10.5812/pedinfect.37680 - PubMed
  110. Bordalo Tonucci L, Dos Santos KMO, De Luces Fortes Ferreira CL et al (2017) Gut microbiota and probiotics: focus on diabetes mellitus. Crit Rev Food Sci Nutr 57:2296–2309 - PubMed
  111. Liu H, Gu R, Li W, Xue J, Z1 C, Wei Q et al (2019) Probiotics protect against tenofovir-induced mandibular bone loss in mice by rescuing mandible-derived mesenchymal stem cell proliferation and osteogenic differentiation. J Oral Rehabil. https://doi.org/10.1111/joor.12840 - PubMed
  112. Van Staden ADP, Faure LM, Vermeulen RR, Dicks LMT, Smith C et al (2019) Functional expression of GFP-fused class I lanthipeptides in Escherichia coli. ACS Synth Biol 8:2220–2227 - PubMed
  113. Yan J, Tie G, Wang S, Messina KE, DiDato S, Guo S et al (2012) Type 2 diabetes restricts multipotency of mesenchymal stem cells and impairs their capacity to augment postischemic neovascularization in db/db mice. J Am Heart Assoc 1:e002238. https://doi.org/10.1161/JAHA.112.002238 - PubMed
  114. Chen TS, Ju DT, Day CH, Yeh YL, Chen RJ, Viswanadha VP et al (2019) Protective effect of autologous transplantation of resveratrol preconditioned adipose-derived stem cells in the treatment of diabetic liver dysfunction in rat model. J Tissue Eng Regen Med 13:1629–1640 - PubMed
  115. Kim YS, Kwon JS, Hong MH, Kang WS, Jeong HY, Kang HJ et al (2013) Restoration of angiogenic capacity of diabetes-insulted mesenchymal stem cells by oxytocin. BMC Cell Biol 14:38. https://doi.org/10.1186/1471-2121-14-38 - PubMed
  116. Ariyanti AD, Zhang J, Marcelina O, Nugrahaningrum DA, Wang G, Kasim V et al (2019) Salidroside-pretreated mesenchymal stem cells enhance diabetic wound healing by promoting paracrine function and survival of mesenchymal stem cells under hyperglycemia. Stem Cells Transl Med 8:404–414 - PubMed
  117. Khan M, Akhtar S, Mohsin S, N Khan S, Riazuddin S (2011) Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev 20:67–75 - PubMed
  118. Cavallari G, Olivi E, Bianchi F et al (2012) Mesenchymal stem cells and islet cotransplantation in diabetic rats: improved islet graft revascularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules. Cell Transplant 21:2771–2781. https://doi.org/10.3727/096368912X637046 - PubMed
  119. Gholami Farashah MS, Pasbakhsh P, Omidi A et al (2019) Preconditioning with SDF-1 improves therapeutic outcomes of bone marrow-derived mesenchymal stromal cells in a mouse model of STZ-induced diabetes. Avicenna J Med Biotechnol 11:35–42 - PubMed
  120. Li Q, Guo Y, Chen F, Liu J, Jin P (2016) Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing. Exp Ther Med 12:45–50 - PubMed
  121. Abdelrahman SA, Samak MA, Shalaby SM (2018) Fluoxetine pretreatment enhances neurogenic, angiogenic and immunomodulatory effects of MSCs on experimentally induced diabetic neuropathy. Cell Tissue Res 374:83–97 - PubMed
  122. Rashed LA, Elattar S, Eltablawy N, Ashour H, Mahmoud LM, El-Esawy Y et al (2018) Mesenchymal stem cells pretreated with melatonin ameliorate kidney functions in a rat model of diabetic nephropathy. Biochem Cell Biol 96:564–571 - PubMed
  123. Lu H, Wu X, Wang Z, Li L, Chen W, Yang M et al (2016) Erythropoietin-activated mesenchymal stem cells promote healing ulcers by improving microenvironment. J Surg Res 205:464–473 - PubMed
  124. Shree N, Bhonde RR (2016) Metformin preconditioned adipose derived mesenchymal stem cells is a better option for the reversal of diabetes upon transplantation. Biomed Pharmacother 84:1662–1667 - PubMed
  125. Najafi R, Sharifi AM (2013) Deferoxamine preconditioning potentiates mesenchymal stem cell homing in vitro and in streptozotocin-diabetic rats. Expert Opin Biol Ther 13:959–972 - PubMed

MeSH terms

Publication Types