Display options
Share it on

Urolithiasis. 2021 Oct;49(5):485-491. doi: 10.1007/s00240-021-01258-2. Epub 2021 Mar 03.

Minimally invasive percutaneous nephrolithotomy with SuperPulsed Thulium-fiber laser.

Urolithiasis

Dmitry Korolev, Gagik Akopyan, Dmitry Tsarichenko, Anastasia Shpikina, Stanislav Ali, Denis Chinenov, Mariela Corrales, Mark Taratkin, Olivier Traxer, Dmitry Enikeev

Affiliations

  1. Institute for Urology and Reproductive Health, Sechenov University, 2/1 Bolshaya Pirogovskaya St, Moscow, 119991, Russia.
  2. International School "Medicine of the Future", Sechenov University, Moscow, Russia.
  3. GRC #20 Lithiase Urinaire, Sorbonne University, Hôpital Tenon, Paris, France.
  4. Institute for Urology and Reproductive Health, Sechenov University, 2/1 Bolshaya Pirogovskaya St, Moscow, 119991, Russia. [email protected].

PMID: 33655346 DOI: 10.1007/s00240-021-01258-2

Abstract

We aimed to assess the efficacy and safety of minimally invasive percutaneous nephrolithotomy (PCNL) with SuperPulsed Thulium-fiber laser (SP TFL) using different frequency settings. 125 patients with solitary kidney calculi of up to 55 mm in the maximum diameter underwent mini-PCNL with the SP TFL. Stone-free rate, laser-on time, ablation efficacy, energy consumption, ablation speed and complications were all analyzed. Negative low-dose computed tomography scan or asymptomatic patients with stone fragments < 2 mm were the criteria for assessing the stone-free status. In 36 patients (28.8%) low frequency regimens were used (LF: 3-19 Hz-0.5-6 J), in 75 patients (60%) high frequency regimens were chosen (HF: 20-49 Hz-0.2-2 J) and in 14 (11.2%) patients higher frequency (HRF: 50-200 Hz-0.1-0.5 J) regimens were preferred. The mean age was 52 ± 1.8 years. Median stone diameter and median stone volume were larger at low frequency regimens compared to high frequency regimens. Ablation efficacy (J/mm

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.

Keywords: Kidney; Percutaneous nephrolithotomy; Thulium fiber laser; Urinary stones; Urolithiasis

References

  1. K. T. C. Türk (Chair), A. Neisius, A. Petrik, C. Seitz, A. Skolarikos (Vice-chair) and Y. R. Guidelines Associates: N.F. Davis, J.F. Donaldson, R. Lombardo, N. Grivas (2020) EAU Guidelines on Urolithiasis. Eur. Assoc. Urol. Guidel. Off., [Online]. http://uroweb.org/guideline/urolithiasis/ . - PubMed
  2. Rassweiler J, Rassweiler MC, Klein J (2016) New technology in ureteroscopy and percutaneous nephrolithotomy. Curr Opin Urol 26(1):95–106. https://doi.org/10.1097/MOU.0000000000000240 - PubMed
  3. Jones P, Elmussareh M, Aboumarzouk OM, Mucksavage P, Somani BK (2018) Role of Minimally Invasive (Micro and Ultra-mini) PCNL for Adult Urinary Stone Disease in the Modern Era: evidence from a systematic review. Curr Urol Rep 19(4):1–8. https://doi.org/10.1007/s11934-018-0764-5 - PubMed
  4. Tia IL (1999) REVIEW A systematic review of the clinical e Y cacy and e V ectiveness of the holmium. YAG Laser Urol 49(2):189–199 - PubMed
  5. Patel AP, Knudsen BE (2014) Optimizing use of the holmium:YAG laser for surgical management of urinary lithiasis. Curr Urol Rep 15(4):1–7. https://doi.org/10.1007/s11934-014-0397-2 - PubMed
  6. Keller EX et al (2019) Fragments and dust after Holmium laser lithotripsy with or without ‘Moses technology’: how are they different? J Biophotonics. https://doi.org/10.1002/jbio.201800227 - PubMed
  7. Enikeev D et al (2020) Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World J Urol 38(2):497–503. https://doi.org/10.1007/s00345-019-02785-9 - PubMed
  8. Chew BH, Knudsen BE, Molina WR (2019) MP79-19 comparison of dusting and fragmenting using the new super pulse thulium fiber laser to a 120w holmium: yag laser. J Urol. https://doi.org/10.1097/01.ju.0000557398.56442.e8 - PubMed
  9. Finch W, Johnston R, Shaida N, Winterbottom A, Wiseman O (2014) Measuring stone volume—three-dimensional software reconstruction or an ellipsoid algebra formula? BJU Int 113(4):610–614. https://doi.org/10.1111/bju.12456 - PubMed
  10. De La Rosette JJMCH et al (2012) Categorisation of complications and validation of the Clavien score for percutaneous nephrolithotomy. Eur Urol 62(2):246–255. https://doi.org/10.1016/j.eururo.2012.03.055 - PubMed
  11. Dauw CA et al (2015) Contemporary practice patterns of flexible ureteroscopy for treating renal stones: results of a worldwide survey. J Endourol 29(11):1221–1230. https://doi.org/10.1089/end.2015.0260 - PubMed
  12. Andreeva V et al (2020) Preclinical comparison of superpulse thulium fiber laser and a holmium: YAG laser for lithotripsy. World J Urol 38(2):497–503. https://doi.org/10.1007/s00345-019-02785-9 - PubMed
  13. Kronenberg P, Traxer O (2019) The laser of the future: Reality and expectations about the new thulium fiber laser-a systematic review. Transl Androl Urol 8(Suppl 4):S398–S417. https://doi.org/10.21037/tau.2019.08.01 - PubMed
  14. Dymov A et al (2017) V11-11 thulium lithotripsy: from experiment to clinical practice. J Urol. https://doi.org/10.1016/j.juro.2017.02.3000 - PubMed
  15. Fried NM (2018) Recent advances in infrared laser lithotripsy [Invited]. Biomed Opt Express 9(9):4552. https://doi.org/10.1364/boe.9.004552 - PubMed
  16. Taratkin M et al (2020) Temperature changes during laser lithotripsy with Ho: YAG laser and novel Tm-fiber laser: a comparative in-vitro study. World J. https://doi.org/10.1007/s00345-020-03122-1 - PubMed
  17. Taratkin M et al (2020) How lasers ablate stones: in vitro study of laser lithotripsy (Ho:YAG and Tm-fiber lasers) in different environments. J Endourol. https://doi.org/10.1089/end.2019.0441 - PubMed
  18. Enikeev D, Traxer O, Taratkin M, Okhunov Z, Shariat S (2020) A review of thulium-fiber laser in stone lithotripsy and soft tissue surgery. Opin. Urol, Curr. https://doi.org/10.1097/MOU.0000000000000815 - PubMed
  19. Enikeev D, Shariat SF, Taratkin M, Glybochko P (2020) The changing role of lasers in urologic surgery. Curr Opin Urol 30(1):24–29. https://doi.org/10.1097/MOU.0000000000000695 - PubMed
  20. Teichman JMH, Vassar GJ, Bishoff JT, Bellman GC (1998) Holmium:YAG lithotripsy yields smaller fragments than lithoclast, pulsed dye laser or electrohydraulic lithotripsy. J Urol 159(1):17–23. https://doi.org/10.1016/S0022-5347(01)63998-3 - PubMed
  21. Fried NM, Murray KE (2005) New technologies in endourology: High-power thulium fiber laser ablation of urinary tissues at 1.94 μm. J Endourol 19(1):25–31. https://doi.org/10.1089/end.2005.19.25 - PubMed
  22. Becker B et al (2020) Comparative analysis of vaporization and coagulation properties of a hybrid laser (combination of a thulium and blue diode laser) vs thulium and Ho:YAG lasers: potential applications in endoscopic enucleation of the prostate. J Endourol 34(8):862–867. https://doi.org/10.1089/end.2020.0009 - PubMed
  23. Enikeev D et al (2020) Thulium-fiber laser for lithotripsy: first clinical experience in percutaneous nephrolithotomy. Urol World J. https://doi.org/10.1007/s00345-020-03134-x - PubMed
  24. Enikeev D et al (2020) Superpulsed thulium-fiber laser for stone dusting—in search of perfect ablation regimen. A prospective single center study. J Endourol. https://doi.org/10.1089/end.2020.0519 - PubMed
  25. Zeng G et al (2013) Minimally invasive percutaneous nephrolithotomy for simple and complex renal caliceal stones: a comparative analysis of more than 10,000 cases. J Endourol 27(10):1203–1208. https://doi.org/10.1089/end.2013.0061 - PubMed
  26. Cheng F, Yu W, Zhang X, Yang S, Xia Y, Ruan Y (2010) Minimally invasive tract in percutaneous nephrolithotomy for renal stones. J Endourol 24(10):1579–1582. https://doi.org/10.1089/end.2009.0581 - PubMed

Publication Types