Display options
Share it on

Curr Biol. 2021 May 10;31(9):1836-1849.e12. doi: 10.1016/j.cub.2021.01.104. Epub 2021 Mar 02.

A novel family of secreted insect proteins linked to plant gall development.

Current biology : CB

Aishwarya Korgaonkar, Clair Han, Andrew L Lemire, Igor Siwanowicz, Djawed Bennouna, Rachel E Kopec, Peter Andolfatto, Shuji Shigenobu, David L Stern

Affiliations

  1. Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
  2. Human Nutrition Program, Department of Human Sciences, The Ohio State University, 262G Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA.
  3. Human Nutrition Program, Department of Human Sciences, The Ohio State University, 262G Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA; Ohio State University's Foods for Health Discovery Theme, The Ohio State University, 262G Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA.
  4. Department of Biology, Columbia University, 600 Fairchild Center, New York, NY 10027, USA.
  5. Laboratory of Evolutionary Genomics, Center for the Development of New Model Organism, National Institute for Basic Biology, Okazaki 444-8585, Japan; NIBB Research Core Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan.
  6. Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA. Electronic address: [email protected].

PMID: 33657407 PMCID: PMC8119383 DOI: 10.1016/j.cub.2021.01.104

Abstract

In an elaborate form of inter-species exploitation, many insects hijack plant development to induce novel plant organs called galls that provide the insect with a source of nutrition and a temporary home. Galls result from dramatic reprogramming of plant cell biology driven by insect molecules, but the roles of specific insect molecules in gall development have not yet been determined. Here, we study the aphid Hormaphis cornu, which makes distinctive "cone" galls on leaves of witch hazel Hamamelis virginiana. We found that derived genetic variants in the aphid gene determinant of gall color (dgc) are associated with strong downregulation of dgc transcription in aphid salivary glands, upregulation in galls of seven genes involved in anthocyanin synthesis, and deposition of two red anthocyanins in galls. We hypothesize that aphids inject DGC protein into galls and that this results in differential expression of a small number of plant genes. dgc is a member of a large, diverse family of novel predicted secreted proteins characterized by a pair of widely spaced cysteine-tyrosine-cysteine (CYC) residues, which we named BICYCLE proteins. bicycle genes are most strongly expressed in the salivary glands specifically of galling aphid generations, suggesting that they may regulate many aspects of gall development. bicycle genes have experienced unusually frequent diversifying selection, consistent with their potential role controlling gall development in a molecular arms race between aphids and their host plants.

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Keywords: Hamamelis; Hormaphis; anthocyanins; aphid; bicycle genes; effector genes; high-performance liquid chromatography; mass spectrometry; novel genes; plant gall

Conflict of interest statement

Declaration of interests HHMI has filed a provisional patent, number 63/092,942, for the inventors A.K. and D.L.S., covering unique aphid polypeptides for use in modifying plants.

References

  1. New Phytol. 2012 Oct;196(2):586-595 - PubMed
  2. J Agric Food Chem. 2019 Sep 11;67(36):10185-10194 - PubMed
  3. Bioinformatics. 2017 Jul 1;33(13):2050-2052 - PubMed
  4. Plant Biol (Stuttg). 2019 Mar;21(2):284-291 - PubMed
  5. BMC Bioinformatics. 2006 Feb 09;7:62 - PubMed
  6. Bioinformatics. 2015 Jan 15;31(2):166-9 - PubMed
  7. PLoS One. 2019 Oct 24;14(10):e0223686 - PubMed
  8. Front Genet. 2018 Dec 18;9:671 - PubMed
  9. Evolution. 1998 Dec;52(6):1686-1696 - PubMed
  10. Curr Biol. 2015 Mar 2;25(5):613-20 - PubMed
  11. Bioinformatics. 2014 Oct;30(19):2808-10 - PubMed
  12. Nature. 1991 Jun 20;351(6328):652-4 - PubMed
  13. Plant Physiol. 2009 Aug;150(4):2057-70 - PubMed
  14. Bioinformatics. 2012 Dec 15;28(24):3326-8 - PubMed
  15. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 - PubMed
  16. Bioinformatics. 2008 Mar 1;24(5):637-44 - PubMed
  17. Methods Mol Biol. 2019;1962:65-95 - PubMed
  18. Genome Res. 2017 May;27(5):757-767 - PubMed
  19. Oecologia. 1991 Sep;88(1):15-21 - PubMed
  20. Mol Biol Evol. 2013 Apr;30(4):772-80 - PubMed
  21. Science. 1942 Aug 28;96(2487):210-1 - PubMed
  22. Genome Biol. 2002;3(12):RESEARCH0082 - PubMed
  23. Mol Biol Evol. 2013 Sep;30(9):2224-34 - PubMed
  24. Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205 - PubMed
  25. Biochim Biophys Acta. 2014 Jan;1843(1):47-60 - PubMed
  26. J Neurosci Methods. 2008 Jul 30;172(2):220-30 - PubMed
  27. Front Physiol. 2019 Jul 24;10:926 - PubMed
  28. Genome Res. 2010 Sep;20(9):1297-303 - PubMed
  29. Bioinformatics. 2017 Nov 15;33(22):3645-3647 - PubMed
  30. Bioinformatics. 2017 Nov 15;33(22):3635-3637 - PubMed
  31. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  32. Mol Biol Evol. 2007 Aug;24(8):1586-91 - PubMed
  33. Appl Plant Sci. 2015 May 13;3(5): - PubMed
  34. Curr Protoc Bioinformatics. 2020 Mar;69(1):e96 - PubMed
  35. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  36. Bioinformatics. 2015 Oct 1;31(19):3210-2 - PubMed
  37. Genetics. 2001 Jul;158(3):1227-34 - PubMed
  38. PLoS One. 2018 Oct 24;13(10):e0205265 - PubMed
  39. Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515 - PubMed
  40. PLoS Biol. 2009 Aug;7(8):e1000179 - PubMed
  41. Mol Phylogenet Evol. 2002 May;23(2):257-67 - PubMed
  42. G3 (Bethesda). 2018 Jan 4;8(1):79-89 - PubMed
  43. PLoS Genet. 2019 Nov 4;15(11):e1008398 - PubMed
  44. Cell. 2018 May 17;173(5):1280-1292.e18 - PubMed
  45. PLoS One. 2019 Dec 17;14(12):e0225881 - PubMed
  46. Phytochemistry. 2012 Oct;82:38-45 - PubMed
  47. Insect Biochem Mol Biol. 2014 Oct;53:66-72 - PubMed
  48. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 - PubMed
  49. Nat Biotechnol. 2019 Apr;37(4):420-423 - PubMed
  50. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  51. Nat Prod Rep. 2003 Jun;20(3):288-303 - PubMed
  52. Bioinformatics. 2011 Nov 1;27(21):2987-93 - PubMed
  53. Nature. 1995 Jun 1;375(6530):397-400 - PubMed
  54. Bioinformatics. 2011 Aug 1;27(15):2156-8 - PubMed
  55. Nature. 2010 Mar 11;464(7286):275-8 - PubMed
  56. Plant Physiol. 1962 Jan;37(1):98-103 - PubMed
  57. PLoS Comput Biol. 2011 Oct;7(10):e1002195 - PubMed
  58. Bioinformatics. 2011 Jun 15;27(12):1691-2 - PubMed
  59. BMC Genomics. 2015 Nov 16;16:943 - PubMed
  60. Genome Res. 2007 Dec;17(12):1755-62 - PubMed
  61. Annu Rev Genet. 2002;36:521-56 - PubMed
  62. Bioinformatics. 2009 Aug 1;25(15):1972-3 - PubMed
  63. BMC Genomics. 2019 Dec 3;20(1):923 - PubMed
  64. Nature. 2002 Feb 28;415(6875):1022-4 - PubMed
  65. J Mol Biol. 2001 Jan 19;305(3):567-80 - PubMed
  66. Nucleic Acids Res. 2014 Sep;42(15):e119 - PubMed
  67. Nat Biotechnol. 2011 Jan;29(1):24-6 - PubMed
  68. Am J Hum Genet. 2007 Sep;81(3):559-75 - PubMed
  69. J Chem Ecol. 2014 Jul;40(7):742-53 - PubMed
  70. Curr Biol. 2006 Mar 21;16(6):580-5 - PubMed
  71. Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):923-928 - PubMed
  72. PLoS One. 2010 Mar 10;5(3):e9490 - PubMed
  73. Nat Methods. 2015 Apr;12(4):357-60 - PubMed
  74. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2271-6 - PubMed
  75. Science. 1947 Oct 31;106(2757):419-20 - PubMed
  76. Nature. 2002 Feb 28;415(6875):1024-6 - PubMed
  77. Genetics. 2014 Jan;196(1):313-20 - PubMed
  78. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16663-8 - PubMed
  79. Curr Opin Plant Biol. 2013 Aug;16(4):451-6 - PubMed
  80. Curr Opin Struct Biol. 1998 Jun;8(3):333-7 - PubMed
  81. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  82. Curr Opin Plant Biol. 2011 Aug;14(4):422-8 - PubMed
  83. Trends Ecol Evol. 2000 Dec 1;15(12):496-503 - PubMed
  84. Bioinformatics. 2016 Mar 1;32(5):767-9 - PubMed
  85. Bioinformatics. 2010 Mar 15;26(6):841-2 - PubMed
  86. J Integr Plant Biol. 2016 Apr;58(4):350-61 - PubMed
  87. BMC Evol Biol. 2010 Sep 28;10:296 - PubMed
  88. Biosci Biotechnol Biochem. 2013;77(9):1942-8 - PubMed
  89. Curr Opin Insect Sci. 2015 Jun;9:56-61 - PubMed
  90. Mol Ecol Resour. 2017 Jan;17(1):44-53 - PubMed
  91. Brief Bioinform. 2013 Mar;14(2):178-92 - PubMed
  92. BMC Bioinformatics. 2009 Dec 15;10:421 - PubMed
  93. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  94. Genome Res. 2009 Jan;19(1):136-42 - PubMed

Publication Types

Grant support