Display options
Share it on

J Extracell Vesicles. 2020 Nov;10(1):e12022. doi: 10.1002/jev2.12022. Epub 2020 Nov 25.

Microglial derived extracellular vesicles activate autophagy and mediate multi-target signaling to maintain cellular homeostasis.

Journal of extracellular vesicles

Bram Van den Broek, Isabel Pintelon, Ibrahim Hamad, Sofie Kessels, Mansour Haidar, Niels Hellings, Jerome J A Hendriks, Markus Kleinewietfeld, Bert Brône, Vincent Timmerman, Jean-Pierre Timmermans, Veerle Somers, Luc Michiels, Joy Irobi

Affiliations

  1. Biomedical Research Institute UHasselt Hasselt University Hasselt Belgium.
  2. Laboratory of Cell Biology & Histology Antwerp Centre for Advanced Microscopy (ACAM) University of Antwerp Antwerp Belgium.
  3. VIB Laboratory of Translational Immunomodulation VIB Center for Inflammation Research Hasselt Belgium.
  4. Peripheral Neuropathy Research Group Department of Biomedical Sciences Institute Born Bunge and University of Antwerp Antwerp Belgium.

PMID: 33708355 PMCID: PMC7890546 DOI: 10.1002/jev2.12022

Abstract

Microglia, the immunocompetent cells of the central nervous system (CNS), play an important role in maintaining cellular homeostasis in the CNS. These cells secrete immunomodulatory factors including nanovesicles and participate in the removal of cellular debris by phagocytosis or autophagy. Accumulating evidence indicates that specifically the cellular exchange of small extracellular vesicles (EVs), participates in physiology and disease through intercellular communication. However, the contribution of microglial-derived extracellular vesicles (M-EVs) to the maintenance of microglia homeostasis and how M-EVs could influence the phenotype and gene function of other microglia subtypes is unclear. In addition, knowledge of canonical signalling pathways of inflammation and immunity gene expression patterns in human microglia exposed to M-EVs is limited. Here, we analysed the effects of M-EVs produced in vitro by either tumour necrosis factor alpha (TNFα) activated or non-activated microglia BV2 cells. We showed that M-EVs are internalized by both mouse and human C20 microglia cells and that the uptake of M-EVs in microglia induced autophagic vesicles at various stages of degradation including autophagosomes and autolysosomes. Consistently, stimulation of microglia with M-EVs increased the protein expression of the autophagy marker, microtubule-associated proteins 1A/1B light chain 3B isoform II (LC3B-II), and promoted autophagic flux in live cells. To elucidate the biological activities occurring at the transcriptional level in C20 microglia stimulated with M-EVs, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using targeted RNA sequencing. Inflammation and immunity transcriptome gene panel sequencing of both activated and normal microglia stimulated with M-EVs showed involvement of several canonical pathways and reduced expression of key genes involved in neuroinflammation, inflammasome and apoptosis signalling pathways compared to control cells. In this study, we provide the perspective that a beneficial activity of in vitro cell culture produced EVs could be the modulation of autophagy during cellular stress. Therefore, we use a monoculture system to study microglia-microglia crosstalk which is important in the prevention and propagation of inflammation in the brain. We demonstrate that in vitro produced microglial EVs are able to influence multiple biological pathways and promote activation of autophagy in order to maintain microglia survival and homeostasis.

© 2020 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.

Keywords: RNA sequencing; autophagy; cellular homeostasis; extracellular vesicles; gene expression; immunity; inflammation genes; microglia

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The authors declare that th

References

  1. Trends Mol Med. 2019 Feb;25(2):149-163 - PubMed
  2. Cell Death Dis. 2019 Apr 18;10(5):340 - PubMed
  3. J Extracell Vesicles. 2014 Sep 08;3: - PubMed
  4. Science. 2016 May 6;352(6286):712-716 - PubMed
  5. J Extracell Vesicles. 2015 Dec 31;4:30087 - PubMed
  6. FEBS Lett. 2011 Dec 1;585(23):3798-805 - PubMed
  7. Lab Invest. 2009 Nov;89(11):1317-28 - PubMed
  8. Front Immunol. 2019 May 09;10:1043 - PubMed
  9. Prog Neurobiol. 2019 Jul;178:101612 - PubMed
  10. Front Cell Dev Biol. 2016 Jul 19;4:79 - PubMed
  11. EMBO J. 2019 Sep 2;38(17):e101997 - PubMed
  12. Bioinformatics. 2015 Jan 15;31(2):166-9 - PubMed
  13. Cell. 2016 May 5;165(4):921-35 - PubMed
  14. J Immunol Res. 2017;2017:5150678 - PubMed
  15. Neuroscience. 2019 May 1;405:148-157 - PubMed
  16. Nat Rev Neurosci. 2016 Mar;17(3):160-72 - PubMed
  17. Nanomedicine. 2017 Jul;13(5):1663-1671 - PubMed
  18. Nat Commun. 2016 Aug 25;7:12540 - PubMed
  19. J Extracell Vesicles. 2019 Apr 29;8(1):1609206 - PubMed
  20. Nature. 2017 Jun 22;546(7659):539-543 - PubMed
  21. Cell. 2008 Jan 11;132(1):27-42 - PubMed
  22. Annu Rev Physiol. 2017 Feb 10;79:619-643 - PubMed
  23. Cell. 2013 Dec 19;155(7):1596-609 - PubMed
  24. Methods Enzymol. 2009;452:143-64 - PubMed
  25. Genome Biol. 2014;15(12):550 - PubMed
  26. Curr Opin Neurobiol. 2016 Aug;39:101-7 - PubMed
  27. Front Cell Neurosci. 2013 Jan 30;7:6 - PubMed
  28. Front Aging Neurosci. 2018 Nov 20;10:378 - PubMed
  29. Crit Rev Immunol. 2015;35(5):401-15 - PubMed
  30. PLoS Biol. 2016 May 26;14(5):e1002466 - PubMed
  31. Cell Transplant. 2019 Jan;28(1):36-46 - PubMed
  32. Mol Cell Neurosci. 2006 Apr;31(4):642-8 - PubMed
  33. Ann Transl Med. 2015 Jun;3(10):136 - PubMed
  34. Nat Rev Mol Cell Biol. 2018 Nov;19(11):731-745 - PubMed
  35. Sci Rep. 2015 Jan 23;5:7989 - PubMed
  36. Autophagy. 2007 Nov-Dec;3(6):542-5 - PubMed
  37. Front Physiol. 2012 Jun 27;3:228 - PubMed
  38. Nat Rev Immunol. 2018 Apr;18(4):225-242 - PubMed
  39. Annu Rev Immunol. 2017 Apr 26;35:441-468 - PubMed
  40. Transl Neurodegener. 2017 Mar 13;6:6 - PubMed
  41. Bioinformatics. 2011 Apr 15;27(8):1179-80 - PubMed
  42. J Neurosci. 2014 Nov 12;34(46):15482-9 - PubMed
  43. Nat Rev Immunol. 2009 Aug;9(8):581-93 - PubMed
  44. Front Immunol. 2018 Apr 13;9:698 - PubMed
  45. J Extracell Vesicles. 2018 Nov 23;7(1):1535750 - PubMed
  46. Brain Res Bull. 2012 Jan 4;87(1):10-20 - PubMed
  47. Acta Neuropathol. 2019 Dec;138(6):987-1012 - PubMed
  48. Neuron. 2017 Jul 19;95(2):297-308.e6 - PubMed
  49. Cell Mol Neurobiol. 2016 Apr;36(3):301-12 - PubMed
  50. Annu Rev Cell Dev Biol. 2014;30:255-89 - PubMed
  51. Cell Mol Life Sci. 2011 Aug;68(16):2667-88 - PubMed
  52. Front Cell Neurosci. 2013 Oct 30;7:182 - PubMed

Publication Types