Display options
Share it on

Microb Biotechnol. 2021 Mar 17; doi: 10.1111/1751-7915.13795. Epub 2021 Mar 17.

Physiological activity of E. coli engineered to produce butyric acid.

Microbial biotechnology

Young-Tae Park, Taejung Kim, Jungyeob Ham, Jaeyoung Choi, Hoe-Suk Lee, Young Joo Yeon, Soo In Choi, Nayoung Kim, Yeon-Ran Kim, Yeong-Jae Seok

Affiliations

  1. Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea.
  2. Korea Institute of Science and Technology Natural Products Research Institute, Gangneung, Korea.
  3. Korea Institute of Science and Technology Green City Technology Institute, Seoul, Korea.
  4. Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, Korea.
  5. Seoul National University Bundang Hospital, Seongnam, Korea.

PMID: 33729711 DOI: 10.1111/1751-7915.13795

Abstract

Faecalibacterium prausnitzii (F. prausnitzii) is one of the most abundant bacteria in the human intestine, with its anti-inflammatory effects establishing it as a major effector in human intestinal health. However, its extreme sensitivity to oxygen makes its cultivation and physiological study difficult. F. prausnitzii produces butyric acid, which is beneficial to human gut health. Butyric acid is a short-chain fatty acid (SCFA) produced by the fermentation of carbohydrates, such as dietary fibre in the large bowel. The genes encoding butyryl-CoA dehydrogenase (BCD) and butyryl-CoA:acetate CoA transferase (BUT) in F. prausnitzii were cloned and expressed in E. coli to determine the effect of butyric acid production on intestinal health using DSS-induced colitis model mice. The results from the E. coli Nissle 1917 strain, expressing BCD, BUT, or both, showed that BCD was essential, while BUT was dispensable for producing butyric acid. The effects of different carbon sources, such as glucose, N-acetylglucosamine (NAG), N-acetylgalactosamine (NAGA), and inulin, were compared with results showing that the optimal carbon sources for butyric acid production were NAG, a major component of mucin in the human intestine, and glucose. Furthermore, the anti-inflammatory effects of butyric acid production were tested by administering these strains to DSS-induced colitis model mice. The oral administration of the E. coli Nissle 1917 strain, carrying the expression vector for BCD and BUT (EcN-BCD-BUT), was found to prevent DSS-induced damage. Introduction of the BCD expression vector into E. coli Nissle 1917 led to increased butyric acid production, which improved the strain's health-beneficial effects.

© 2021 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

References

  1. Abraham, B.P., and Quigley, E.M. (2016) Prebiotics and Probiotics in Inflammatory Bowel Disease (IBD). Nutritional Management of Inflammatory Bowel Diseases. Berlin, Germany: Springer, pp. 131-147. - PubMed
  2. Arribas, B., Rodríguez-Cabezas, M.E., Camuesco, D., Comalada, M., Bailón, E., Utrilla, P., et al. (2009) A probiotic strain of Escherichia coli, Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. Br J Pharmacol 157: 1024-1033. - PubMed
  3. Bansil, R., and Turner, B.S. (2018) The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev 124: 3-15. - PubMed
  4. Behnsen, J., Deriu, E., Sassone-Corsi, M., and Raffatellu, M. (2013) Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med 3: a010074. - PubMed
  5. Bennett, G.N., and Rudolph, F.B. (1995) The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum. FEMS Microbiol Rev 17: 241-249. - PubMed
  6. Breyner, N.M., Michon, C., de Sousa, C.S., Vilas, B.P.B., Chain, F., Azevedo, V.A., et al. (2017) Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-κB pathway. Front Microbiol 8: 114. - PubMed
  7. Choe, M., Park, Y.H., Lee, C.R., Kim, Y.R., and Seok, Y.J. (2017) The general PTS component HPr determines the preference for glucose over mannitol. Sci Rep 7: 1-11. - PubMed
  8. Derrien, M., Vaughan, E.E., Plugge, C.M., and de Vos, W.M. (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54: 1469-1476. - PubMed
  9. Diez-Gonzalez, F., Bond, D.R., Jennings, E., and Russell, J.B. (1999) Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch Microbiol 171: 324-330. - PubMed
  10. Duerr, R.H., Taylor, K.D., Brant, S.R., Rioux, J.D., Silverberg, M.S., Daly, M.J., et al. (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314: 1461-1463. - PubMed
  11. Eichele, D.D., and Kharbanda, K.K. (2017) Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 23: 6016. - PubMed
  12. Garrido-Mesa, N., Utrilla, P., Comalada, M., Zorrilla, P., Garrido-Mesa, J., Zarzuelo, A., et al. (2011) The association of minocycline and the probiotic Escherichia coli Nissle 1917 results in an additive beneficial effect in a DSS model of reactivated colitis in mice. Biochem Pharmacol 82: 1891-1900. - PubMed
  13. Guo, S., Chen, S., Ma, J., Ma, Y., Zhu, J., Ma, Y., et al. (2019) Escherichia coli nissle 1917 protects intestinal barrier function by inhibiting NF-κB-mediated activation of the MLCK-P-MLC signaling pathway. Mediators Inflamm 2019: 13-25. - PubMed
  14. Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F., and Brummer, R.J. (2008) The role of butyrate on colonic function. Aliment Pharm Ther 27: 104-119. - PubMed
  15. Jo, S.-H., Park, H.-G., Song, W.-S., Kim, S.-M., Kim, E.-J., Yang, Y.-H., et al. (2019) Structural characterization of phosphoethanolamine-modified lipid A from probiotic Escherichia coli strain Nissle 1917. RSC Adv 9: 19762-19771. - PubMed
  16. Katakura, K., Lee, J., Rachmilewitz, D., Li, G., Eckmann, L., and Raz, E. (2005) Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J Clin Invest 115: 695-702. - PubMed
  17. Kiesler, P., Fuss, I.J., and Strober, W. (2015) Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol 1: 154-170. - PubMed
  18. Liévin-Le, M.V., and Servin, A.L. (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19: 315-337. - PubMed
  19. Losurdo, G., Iannone, A., Contaldo, A., Ierardi, E., Di Leo, A., and Principim, M. (2015) Escherichia coli Nissle 1917 in ulcerative colitis treatment: systematic review and meta-analysis. J Gastrointestin Liver Dis 24: 499-505. - PubMed
  20. Lucas, T.G., Henriques, B.J., Rodrigues, J.V., Bross, P., Gregersen, N., and Gomes, C.M. (2011) Cofactors and metabolites as potential stabilizers of mitochondrial acyl-CoA dehydrogenases. Biochim Biophys Acta 1812: 1658-1663. - PubMed
  21. Lynch, S.V., and Pedersen, O. (2016) The human intestinal microbiome in health and disease. N Engl J Med 375: 2369-2379. - PubMed
  22. Mcmahon, M.D., and Prather, K.L. (2014) Functional screening and in vitro analysis reveal thioesterases with enhanced substrate specificity profiles that improve short-chain fatty acid production in Escherichia coli. Appl Environ Microbiol 80: 1042-1050. - PubMed
  23. Mishiro, T., Kusunoki, R., Otani, A., Ansary, M.M.U., Tongu, M., Harashima, N., et al. (2013) Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8. Lab Investig 93: 834-843. - PubMed
  24. Moens, F., Weckx, S., and De Vuyst, L. (2016) Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. Int J Food Microbiol 231: 76-85. - PubMed
  25. Nie, L., Ren, Y., Janakiraman, A., Smith, S., and Schulz, H. (2008) A novel paradigm of fatty acid β-oxidation exemplified by the thioesterase-dependent partial degradation of conjugated linoleic acid that fully supports growth of Escherichia coli. Biochemistry 47: 9618-9626. - PubMed
  26. Niness, K.R. (1999) Inulin and oligofructose: what are they? J Nutr 129: S1402-1406. - PubMed
  27. Offermanns, S. (2017) Hydroxy-carboxylic acid receptor actions in metabolism. Trends Endocrinol Metab 28: 227-236. - PubMed
  28. Ouwerkerk, J.P., Aalvink, S., Belzer, C., and de Vos, W.M. (2016) Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces. Int J Syst Evol Microbiol 66: 4614-4620. - PubMed
  29. Perler, B., Ungaro, R., Baird, G., Mallette, M., Bright, R., Shah, S., et al. (2019) Presenting symptoms in inflammatory bowel disease: descriptive analysis of a community-based inception cohort. BMC Gastroenterol 19: 47. - PubMed
  30. Sato, M., Yoshida, Y., Nagano, K., Hasegawa, Y., Takebe, J., and Yoshimura, F. (2016) Three CoA transferases involved in the production of short chain fatty acids in Porphyromonas gingivalis. Front Microbiol 7: 1146. - PubMed
  31. Scaldaferri, F., Gerardi, V., Mangiola, F., Lopetuso, L.R., Pizzoferrato, M., Petito, V., et al. (2016) Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: an update. World J Gastroenterol 22: 5505. - PubMed
  32. Seto, Y., Kang, J., Ming, L., Habu, N., Nihei, K.I., Ueda, S., et al. (2010) Genetic replacement of tesB with PTE1 affects chain-length proportions of 3-hydroxyalkanoic acids produced through β-oxidation of oleic acid in Escherichia coli. J Biosci Bioeng 110: 392-396. - PubMed
  33. Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H.R., et al. (2016) Inulin: properties, health benefits and food applications. Carbohydr Polym 147: 444-454. - PubMed
  34. Singh, A.K., Pandey, S.K., Saha, G., and Gattupalli, N.K. (2015) Pyrroloquinoline quinone (PQQ) producing Escherichia coli Nissle 1917 (EcN) alleviates age associated oxidative stress and hyperlipidemia, and improves mitochondrial function in ageing rats. Exp Gerontol 66: 1-9. - PubMed
  35. Song, C.H., Kim, N., Lee, S.M., Nam, R.H., Choi, S.I., Kang, S.R., et al. (2019) Effects of 17β-estradiol on colorectal cancer development after azoxymethane/dextran sulfate sodium treatment of ovariectomized mice. Biochem Pharmacol 164: 139-151. - PubMed
  36. Souza, É.L., Elian, S.D., Paula, L.M., Garcia, C.C., Vieira, A.T., Teixeira, M.M., et al. (2016) Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model. J Med Microbiol 65: 201-210. - PubMed
  37. Tomas, J., Wrzosek, L., Bouznad, N., Bouet, S., Mayeur, C., Noordine, M.L., et al. (2013) Primocolonization is associated with colonic epithelial maturation during conventionalization. FASEB J 27: 645-655. - PubMed
  38. Tralongo, P., Tomasello, G., Sinagra, E., Damiani, P., Leone, A., Palumbo, V.D., et al. (2014) The role of butyric acid as a protective agent against inflammatory bowel diseases. EMBJ 9: 24-35. - PubMed
  39. Vassiliadis, G., Destoumieux-Garzón, D., Lombard, C., Rebuffat, S., and Peduzzi, J. (2010) Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob. Agents Chemother 54: 288-297. - PubMed
  40. Vieira, E.L., Leonel, A.J., Sad, A.P., Beltrão, N.R., Costa, T.F., Ferreira, T.M., et al. (2012) Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem 23: 430-436. - PubMed
  41. Zhang, M., Qiu, X., Zhang, H., Yang, X., Hong, N., Yang, Y., et al. (2014) Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PLoS One 9: e109146. - PubMed

Publication Types

Grant support