Display options
Share it on

Pharmaceutics. 2021 Feb 23;13(2). doi: 10.3390/pharmaceutics13020293.

The Influence of Equipment Design and Process Parameters on Granule Breakage in a Semi-Continuous Fluid Bed Dryer after Continuous Twin-Screw Wet Granulation.

Pharmaceutics

Alexander Ryckaert, Michael Ghijs, Christoph Portier, Dejan Djuric, Adrian Funke, Chris Vervaet, Thomas De Beer

Affiliations

  1. Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
  2. BIOMATH, Department of Mathematical Modelling, Statistics and Bio-informatics, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
  3. Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
  4. Chemical & Pharmaceutical Development, Pharma R&D, Bayer AG, Friedrich-Ebert-Straße 475, 42117 Wuppertal, Germany.

PMID: 33672389 PMCID: PMC7926462 DOI: 10.3390/pharmaceutics13020293

Abstract

The drying unit of a continuous from-powder-to-tablet manufacturing line based on twin-screw granulation (TSG) is a crucial intermediate process step to achieve the desired tablet quality. Understanding the size reduction of pharmaceutical granules before, during, and after the fluid bed drying process is, however, still lacking. A first major goal was to investigate the breakage and attrition phenomena during transport of wet and dry granules, the filling phase, and drying phase on a ConsiGma-25 system (C25). Pneumatic transport of the wet granules after TSG towards the dryer induced extensive breakage, whereas the turbulent filling and drying phase of the drying cells caused rather moderate breakage and attrition. Subsequently, the dry transfer line was responsible for additional extensive breakage and attrition. The second major goal was to compare the influence of drying air temperature and drying time on granule size and moisture content for granules processed with a commercial-scale ConsiGma-25 system and with the R&D-scale ConsiGma-1 (C1) system. Generally, the granule quality obtained after drying with C1 was not predictive for the C25, making it challenging during process development with the C1 to obtain representative granules for the C25.

Keywords: continuous manufacturing; fluid bed drying; granules; moisture content; particle size distribution; process understanding; twin-screw granulation

References

  1. Int J Pharm. 2019 Oct 5;569:118525 - PubMed
  2. Eur J Pharm Biopharm. 2015 Jan;89:239-47 - PubMed
  3. Eur J Pharm Sci. 2018 Mar 30;115:223-232 - PubMed
  4. Int J Pharm. 2018 Jul 10;545(1-2):128-143 - PubMed
  5. Int J Pharm. 2017 Aug 30;529(1-2):329-346 - PubMed
  6. Pharmaceutics. 2018 Jun 02;10(2): - PubMed
  7. Int J Pharm. 2017 Apr 30;522(1-2):234-247 - PubMed
  8. Int J Pharm. 2014 Nov 20;475(1-2):82-96 - PubMed
  9. Int J Pharm. 2017 Aug 30;529(1-2):678-693 - PubMed
  10. Int J Pharm. 2016 Sep 25;511(2):1048-57 - PubMed
  11. Int J Pharm. 2012 Nov 15;438(1-2):20-32 - PubMed
  12. AAPS PharmSciTech. 2011 Dec;12(4):1050-5 - PubMed
  13. Eur J Pharm Biopharm. 2014 Aug;87(3):616-28 - PubMed
  14. Int J Pharm. 2020 Feb 25;576:119004 - PubMed
  15. Int J Pharm. 2020 Feb 25;576:118981 - PubMed
  16. Eur J Pharm Biopharm. 2013 Nov;85(3 Pt B):1031-8 - PubMed
  17. Eur J Pharm Biopharm. 2012 Sep;82(1):205-11 - PubMed
  18. Pharm Dev Technol. 2013 Feb;18(1):85-97 - PubMed
  19. Int J Pharm. 2020 Jul 30;585:119466 - PubMed
  20. Pharm Dev Technol. 2015 Jan;20(1):12-21 - PubMed
  21. J Pharm Pharm Sci. 2005 Apr 16;8(1):76-93 - PubMed
  22. J Pharm Sci. 2019 Jun;108(6):2094-2101 - PubMed
  23. Int J Pharm. 2015 Jan 30;478(2):705-17 - PubMed
  24. Eur J Pharm Biopharm. 2014 Nov;88(3):866-78 - PubMed
  25. AAPS PharmSciTech. 2019 Aug 19;20(7):291 - PubMed
  26. J Pharm Sci. 2015 Mar;104(3):792-802 - PubMed
  27. Eur J Pharm Biopharm. 2014 Jul;87(2):252-63 - PubMed

Publication Types

Grant support