Display options
Share it on

Eur J Appl Physiol. 2021 Jun;121(6):1517-1529. doi: 10.1007/s00421-021-04657-w. Epub 2021 Mar 14.

Non-local acute stretching effects on strength performance in healthy young adults.

European journal of applied physiology

David G Behm, Shahab Alizadeh, Ben Drury, Urs Granacher, Jason Moran

Affiliations

  1. School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada. [email protected].
  2. School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada.
  3. Department of Applied Sport Sciences, Hartpury University, Gloucester, UK.
  4. Division of Training and Movement Science, University of Potsdam, Potsdam, Germany.
  5. School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK.

PMID: 33715049 DOI: 10.1007/s00421-021-04657-w

Abstract

BACKGROUND: Static stretching (SS) can impair performance and increase range of motion of a non-exercised or non-stretched muscle, respectively. An underdeveloped research area is the effect of unilateral stretching on non-local force output.

OBJECTIVE: The objective of this review was to describe the effects of unilateral SS on contralateral, non-stretched, muscle force and identify gaps in the literature.

METHODS: A systematic literature search following preferred reporting items for systematic review and meta-analyses Protocols guidelines was performed according to prescribed inclusion and exclusion criteria. Weighted means and ranges highlighted the non-local force output response to unilateral stretching. The physiotherapy evidence database scale was used to assess study risk of bias and methodological quality.

RESULTS: Unilateral stretching protocols from six studies involved 6.3 ± 2 repetitions of 36.3 ± 7.4 s with 19.3 ± 5.7 s recovery between stretches. The mean stretch-induced force deficits exhibited small magnitude effect sizes for both the stretched (-6.7 ± 7.1%, d = -0.35: 0.01 to -1.8) and contralateral, non-stretched, muscles (-4.0 ± 4.9%, d = , 0.22: 0.08 to 1.1). Control measures exhibited trivial deficits.

CONCLUSION: The limited literature examining non-local effects of prolonged SS revealed that both the stretched and contralateral, non-stretched, limbs of young adults demonstrate small magnitude force deficits. However, the frequency of studies with these effects were similar with three measures demonstrating deficits, and four measures showing trivial changes. These results highlight the possible global (non-local) effects of prolonged SS. Further research should investigate effects of lower intensity stretching, upper versus lower body stretching, different age groups, incorporate full warm-ups, and identify predominant mechanisms among others.

Keywords: Crossover; Fatigue; Flexibility; Mental fatigue; Neural inhibition; Power

References

  1. Anderson K, and Behm DG (2005) The impact of instability resistance training on balance and stability. Sports Med 35(1):43–53. http://www.ncbi.nlm.nih.gov/pubmed/15651912 - PubMed
  2. Avela J, KyrîlÑinen H, Komi PV (1999) Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol 86(4):1283–1291 - PubMed
  3. Bangsbo J, Madsen K, Kiens B, Richter EA (1996) Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 495(Pt 2):587–596. https://doi.org/10.1113/jphysiol.1996.sp021618 - PubMed
  4. Behm, DG (2018) The science and physiology of flexibility and stretching: implications and applications in sport performance and health, chaps 3–6. Routledge Publishers, London, UK - PubMed
  5. Behm DG, Anderson KG (2006) The role of instability with resistance training. J Strength Cond Res 20(3):716–722. https://doi.org/10.1519/R-18475.1 - PubMed
  6. Behm DG, Chaouachi A (2011) A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol 111(11):2633–2651. https://doi.org/10.1007/s00421-011-1879-2 - PubMed
  7. Behm DG, Drinkwater EJ, Willardson JM, Cowley PM (2010) The use of instability to train the core musculature. Appl Physiol Nutr Metab 35(1):91–108. https://doi.org/10.1139/H09-127 - PubMed
  8. Behm DG, Blazevich AJ, Kay AD, McHugh M (2016a) Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab 41(1):1–11. https://doi.org/10.1139/apnm-2015-0235 - PubMed
  9. Behm DG, Cavanaugh T, Quigley P, Reid JC, Nardi PS, Marchetti PH (2016b) Acute bouts of upper and lower body static and dynamic stretching increase non-local joint range of motion. Eur J Appl Physiol 116(1):241–249. https://doi.org/10.1007/s00421-015-3270-1 - PubMed
  10. Behm DG, Lau RJ, O’Leary JJ, Rayner MCP, Burton EA, Lavers L (2019) Acute effects of unilateral self-administered static stretching on contralateral limb performance. J Perform Health Res 3(1):1–7. https://doi.org/10.2503/jphr.2019.3.1.behm - PubMed
  11. Behm DG, Kay AD, Trajano GS, Blazevich AJ (2020) Mechanisms underlying performance impairments following prolonged static stretching without a comprehensive warm-up. Eur J Appl Physiol. https://doi.org/10.1007/s00421-020-04538-8 - PubMed
  12. Benetazzo L, Bizzego A, De Caro R, Frigo G, Guidolin D, Stecco C (2011) 3D reconstruction of the crural and thoracolumbar fasciae. Surg Radiol Anat 33(10):855–862. https://doi.org/10.1007/s00276-010-0757-7 - PubMed
  13. Budini F, Gallasch E, Christova M, Rafolt D, Rauscher AB, Tilp M (2017) One minute static stretch of plantar flexors transiently increases H reflex excitability and exerts no effect on corticospinal pathways. Exper Physiol 102(8):901–910 - PubMed
  14. Budini F, Kemper D, Christova M, Gallasch E, Rafolt D, Tilp M (2019) Five minutes static stretching influences neural responses at spinal level in the background of unchanged corticospinal excitability. J Musculoskel Neuronal Interact 19(1):30–36 - PubMed
  15. Caldwell SL, Bilodeau RLS, Cox MJ, Peddle D, Cavanaugh T, Young JD et al (2019a) Unilateral hamstrings static stretching can impair the affected and contralateral knee extension force but improve unilateral drop jump height. Eur J Appl Physiol 119(9):1943–1949. https://doi.org/10.1007/s00421-019-04182-x - PubMed
  16. Caldwell SL, Bilodeau RLS, Cox MJ, Behm DG (2019b) Twice daily, self-administered band stretch training improves quadriceps isometric force and drop jump characteristics. J Sport Sci Med 18:544–551 - PubMed
  17. Ce E, Coratella G, Bisconti AV, Venturelli M, Limonta E, Doria C et al (2020) Neuromuscular versus mechanical stretch-induced changes in contra- versus ipsilateral muscle. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000002255 - PubMed
  18. Chaabene H, Behm DG, Negra Y, Granacher U (2019) Acute effects of static stretching on muscle strength and power: an attempt to clarify previous caveats. Front Physiol 10:1468–1472. https://doi.org/10.3389/fphys.2019.01468 - PubMed
  19. Chaouachi A, Padulo J, Ben KS, Othmen A, Chatra M, Behm DG (2017) Unilateral static and dynamic hamstrings stretching increases contralateral hip flexion range of motion. Clin Physiol Funct Imaging 37(1):23–29. https://doi.org/10.1111/cpf.12263 - PubMed
  20. Clark S, Christiansen A, Hellman DF, Hugunin JW, Hurst KM (1999) Effects of ipsilateral anterior thigh soft tissue stretching on passive unilateral straight-leg raise. J Orthop Sports Phys Ther 29(1):4–12. https://doi.org/10.2519/jospt.1999.29.1.4 - PubMed
  21. Cohen J (1988) Statistical power analysis for the behavioural sciences. L. Erbraum Associates, Hillside, pp 48–96 - PubMed
  22. Colosio AL, Teso M, Pogliaghi S (2020) Prolonged static stretching causes acute, nonmetabolic fatigue and impairs exercise tolerance during severe-intensity cycling. Appl Physiol Nutr Metab 45(8):902–910. https://doi.org/10.1139/apnm-2019-0981 - PubMed
  23. Debold EP, Fitts RH, Sundberg CW, Nosek TM (2016) Muscle fatigue from the perspective of a single crossbridge. Med Sci Sports Exerc 48(11):2270–2280 - PubMed
  24. De-la-Cruz-Torres B, Carrasco-Iglesias C, Minaya-Munoz F, Romero-Morales C (2020) Crossover effects of ultrasound-guided percutaneous neuromodulation on contralateral hamstring flexibility. Acupunct Med: https://doi.org/10.1177/0964528420920283 - PubMed
  25. Delwaide PJ, Toulouse P, Crenna P (1981) Hypothetical role of long-loop reflex pathways. Appl Neurophysiol 44(1–3):71–176. http://www.ncbi.nlm.nih.gov/pubmed/7294778 - PubMed
  26. Eng CM, Pancheri FQ, Lieberman DE, Biewener AA, Dorfmann L (2014) Directional differences in the biaxial material properties of fascia lata and the implications for fascia function. Ann Biomed Eng 42(6):1224–1237. https://doi.org/10.1007/s10439-014-0999-3 - PubMed
  27. Fitts RH (2008) The cross-bridge cycle and skeletal muscle fatigue. J Appl Physiol 104(2):551–558. https://doi.org/10.1152/japplphysiol.01200.2007 - PubMed
  28. Guissard N, Duchateau J, Hainaut K (2001) Mechanisms of decreased motoneurone excitation during passive muscle stretching. Exp Brain Res 137:163–169 - PubMed
  29. Halperin I, Aboodarda SJ, Behm DG (2014) Knee extension fatigue attenuates repeated force production of the elbow flexors. Eur J Sport Sci 14(8):823–829. https://doi.org/10.1080/17461391.2014.911355 - PubMed
  30. Halperin I, Chapman DW, Behm DG (2015) Non-local muscle fatigue: effects and possible mechanisms. Eur J Appl Physiol 115(10):2031–2048. https://doi.org/10.1007/s00421-015-3249-y - PubMed
  31. Herzog W (2014) The role of titin in eccentric muscle contraction. J Exp Biol 217(Pt 16):2825–2833. https://doi.org/10.1242/jeb.099127 - PubMed
  32. Huijing PA, van de Langenberg RW, Meesters JJ, Baan GC (2007) Extramuscular myofascial force transmission also occurs between synergistic muscles and antagonistic muscles. J Electromyogr Kinesiol 17(6):680–689. https://doi.org/10.1016/j.jelekin.2007.02.005 - PubMed
  33. Inami T, Shimizu T, Baba R, Nakagaki A (2014) Acute changes in autonomic nerve activity during passive static stretching. Amer J Sports Sci Med 2(4):166–170 - PubMed
  34. Jelmini JD, Cornwell A, Khodiguian N, Thayer J, Araujo AJ (2018) Acute effects of unilateral static stretching on handgrip strength of the stretched and non-stretched limb. Eur J Appl Physiol 118(5):927–936. https://doi.org/10.1007/s00421-018-3810-6 - PubMed
  35. Jenner JR, Stephens JA (1982) Cutaneous reflex responses and thier central nervous pathways studied in man. J Physiol 333:405–419 - PubMed
  36. Johnson MA, Mills DE, Brown PI, Sharpe GR (2014) Prior upper body exercise reduces cycling work capacity but not critical power. Med Sci Sports Exerc 46(4):802–808. https://doi.org/10.1249/MSS.0000000000000159 - PubMed
  37. Juel C (1986) Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflugers Arch 406(5):458–463. https://doi.org/10.1007/bf00583367 - PubMed
  38. Kay AD, Blazevich AJ (2009) Isometric contractions reduce plantar flexor moment, Achilles tendon stiffness, and neuromuscular activity but remove the subsequent effects of stretch. J Appl Physiol 107(4):1181–1189. https://doi.org/10.1152/japplphysiol.00281.2009 - PubMed
  39. Kay AD, Blazevich AJ (2012) Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc 44(1):154–164. https://doi.org/10.1249/MSS.0b013e318225cb27 - PubMed
  40. Kay AD, Husbands-Beasley J, Blazevich AJ (2015) Effects of contract-relax, static stretching, and isometric contractions on muscle-tendon mechanics. Med Sci Sports Exerc 47(10):2181–2190. https://doi.org/10.1249/MSS.0000000000000632 - PubMed
  41. Kearney RE, Chan CWY (1999) Reflex response of human arm muscles to cutaneous stimulation of the foot. Brain Res 170:214–217 - PubMed
  42. Killen BS, Zelizney KL, Ye X (2019) Crossover effects of unilateral static stretching and foam rolling on contralateral hamstring flexibility and strength. J Sport Rehabil 28(6):533–539. https://doi.org/10.1123/jsr.2017-0356 - PubMed
  43. Konrad A, Stafilidis S, Tilp M (2017a) Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties. Scand J Med Sci Sports 27(10):1070–1080. https://doi.org/10.1111/sms.12725 - PubMed
  44. Konrad A, Budini F, Tilp M (2017b) Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties. Eur J Appl Physiol 117(8):1649–1656. https://doi.org/10.1007/s00421-017-3654-5 - PubMed
  45. Krause F, Wilke J, Vogt L, Banzer W (2016) Intermuscular force transmission along myofascial chains: a systematic review. J Anat 228(6):910–918. https://doi.org/10.1111/joa.12464 - PubMed
  46. Lee RH, Heckman C (2000) Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. J Neurosci 20(17):6734–6740 - PubMed
  47. Lee EJ, Joumaa V, Herzog W (2007) New insights into the passive force enhancement in skeletal muscles. J Biomech 40(4):719–727. https://doi.org/10.1016/j.jbiomech.2006.10.009 - PubMed
  48. Leonard TR, Herzog W (2010) Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am J Physiol Cell Physiol 299(1):C14-20. https://doi.org/10.1152/ajpcell.00049.2010 - PubMed
  49. Lima BN, Lucareli PR, Gomes WA, Silva JJ, Bley AS, Hartigan EH, et al (2014) The acute effects of unilateral ankle plantar flexors static- stretching on postural sway and gastrocnemius muscle activity during single-leg balance tasks. J Sports Sci Med 13(3):564–570. http://www.ncbi.nlm.nih.gov/pubmed/25177183 - PubMed
  50. Maas H, Baan GC, Huijing PA (2001) Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. J Biomech 34(7):927–940. https://doi.org/10.1016/s0021-9290(01)00055-0 - PubMed
  51. Maas H, Meijer HJ, Huijing PA (2005) Intermuscular interaction between synergists in rat originates from both intermuscular and extramuscular myofascial force transmission. Cells Tissues Organs 181(1):38–50. https://doi.org/10.1159/000089967 - PubMed
  52. Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M (1996) A mechanism for altered flexibility in human skeletal muscle. J Physiol 497(Pt 1):291–298 (PM:8951730) - PubMed
  53. Magnusson SP, Simonsen EB, Aagaard P, Boesen J, Johannsen F, Kjaer M (1997) Determinants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand J Med Sci Sports 7(4):195–202. https://www.ncbi.nlm.nih.gov/pubmed/9241023 - PubMed
  54. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83(8):713–721. https://www.ncbi.nlm.nih.gov/pubmed/12882612 - PubMed
  55. Marchetti PH, Silva FH, Soares EG, Serpa EP, Nardi PS, Vilela Gode B, et al (2014) Upper limb static-stretching protocol decreases maximal concentric jump performance. J Sports Sci Med 13(4):945–950. http://www.ncbi.nlm.nih.gov/pubmed/25435789 - PubMed
  56. Marchetti PH, Reis RG, Gomes WA, da Silva WA, Soares EG, de Freitas FS, Behm DG (2017) Static-stretching of the pectoralis major decreases tríceps brachii activation during a maximal isometric bench press. Gazz Med Ital 176:212–218. https://doi.org/10.23736/S0393-3660.17.03452-0 - PubMed
  57. Marcora SM, Staiano W, Manning V (2009) Mental fatigue impairs physical performance in humans. J Appl Physiol 106(3):857–864. https://doi.org/10.1152/japplphysiol.91324.2008 - PubMed
  58. Meijer HJ, Rijkelijkhuizen JM, Huijing PA (2007) Myofascial force transmission between antagonistic rat lower limb muscles: effects of single muscle or muscle group lengthening. J Electromyogr Kinesiol 17(6):698–707. https://doi.org/10.1016/j.jelekin.2007.02.006 - PubMed
  59. Myers TW (2001) Anatomy trains: Myofascial meridians for manual and movement therapists. Chirchill Livingstone Publishers, Edinburgh, pp 73–157 - PubMed
  60. Nordsborg N, Mohr M, Pedersen LD, Nielsen JJ, Langberg H, Bangsbo J (2003) Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am J Physiol Regul Integr Comp Physiol 285(1):R143-148. https://doi.org/10.1152/ajpregu.00029.2003 - PubMed
  61. Norton-Old KJ, Schache AG, Barker PJ, Clark RA, Harrison SM, Briggs CA (2013) Anatomical and mechanical relationship between the proximal attachment of adductor longus and the distal rectus sheath. Clin Anat 26(4):522–530. https://doi.org/10.1002/ca.22116 - PubMed
  62. Opplert J, Paizis C, Papitsa A, Blazevich AJ, Cometti C, Babault N (2020) Static stretch and dynamic muscle activity induce acute similar increase in corticospinal excitability. PLoS ONE 15(3):e0230388. https://doi.org/10.1371/journal.pone.0230388 - PubMed
  63. Pageaux B, Marcora SM, Lepers R (2013) Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Med Sci Sports Exerc 45(12):2254–2264. https://doi.org/10.1249/MSS.0b013e31829b504a - PubMed
  64. Pageaux B, Lepers R, Dietz KC, Marcora SM (2014) Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol 114(5):1095–1105. https://doi.org/10.1007/s00421-014-2838-5 - PubMed
  65. Perry J, Bekey GA (1981a) EMG-force relationships in skeletal muscle. CRC Crit Rev Biomed Eng 7:1–21 - PubMed
  66. Perry J, Bekey GA (1981b) EMG-force relationships in skeletal muscle. CRC Critical Rev Biomedical Engin 7(1):1–21 - PubMed
  67. Phillips C, Powell T, Wiesendanger M (1971) Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J Physiol 217(2):419–446 - PubMed
  68. Prochazka A, Ellaway P (2012) Sensory systems in the control of movement. Comprehensive Physiol 2:2615–2627 - PubMed
  69. Pulverenti TS, Trajano GS, Kirk BJC, Blazevich AJ (2019) The loss of muscle force production after muscle stretching is not accompanied by altered corticospinal excitability. Eur J Appl Physiol 119(10):2287–2299. https://doi.org/10.1007/s00421-019-04212-8 - PubMed
  70. Pulverenti TS, Trajano GS, Walsh A, Kirk BJC, Blazevich AJ (2020) Lack of cortical or Ia-afferent spinal pathway involvement in muscle force loss after passive static stretching. J Neurophysiol 123(5):1896–1906. https://doi.org/10.1152/jn.00578.2019 - PubMed
  71. Rathelot JA, Strick PL (2009) Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci 106(3):918–923 - PubMed
  72. Reid MB (2016) Reactive oxygen species as agents of fatigue. Med Sci Sports Exerc 48(11):2239–2246. https://doi.org/10.1249/MSS.0000000000001006 - PubMed
  73. Schleip R, Duerselen L, Vleeming A, Naylor IL, Lehmann-Horn F, Zorn A et al (2012) Strain hardening of fascia: static stretching of dense fibrous connective tissues can induce a temporary stiffness increase accompanied by enhanced matrix hydration. J Bodyw Mov Ther 16(1):94–100. https://doi.org/10.1016/j.jbmt.2011.09.003 - PubMed
  74. Stephenson DG, Williams DA (1985) Temperature-dependent calcium sensitivity changes in skinned muscle fibres of rat and toad. J Physiol 360:1–12. https://doi.org/10.1113/jphysiol.1985.sp015600 - PubMed
  75. Sugi H, Abe T, Kobayashi T, Chaen S, Ohnuki Y, Saeki Y et al (2013) Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength. PLoS ONE 8(5):e63658. https://doi.org/10.1371/journal.pone.0063658 - PubMed
  76. Thomas E, Bellafiore M, Gentile A, Paoli A, Palma A, Bianco A (2021) Cardiovascular responses to muscle stretching: a systematic review and meta-analysis. Int J Sports Med. https://doi.org/10.1055/a-1312-7131 - PubMed
  77. Trajano GS, Seitz LB, Nosaka K, Blazevich AJ (2014a) Can passive stretch inhibit motoneuron facilitation in the human plantar flexors? J Apply Physiol 117(12):1486–1492 - PubMed
  78. Trajano GS, Nosaka K, Seitz LB, Blazevich AJ (2014b) Intermittent stretch reduces force and central drive more than continuous stretch. Med Sci Sports Exerc 46(5):902–910. https://doi.org/10.1249/MSS.0000000000000185 - PubMed
  79. Trajano GS, Nosaka K, Blazevich AJ (2017) Neurophysiological mechanisms underpinning stretch-induced force loss. Sports Med 47(8):1531–1541. https://doi.org/10.1007/s40279-017-0682-6 - PubMed
  80. Trajano GS, Taylor JL, Orssatto LBR, McNulty CR, Blazevich AJ (2020) Passive muscle stretching reduces estimates of persistent inward current strength in soleus motor units. J Exp Biol. https://doi.org/10.1242/jeb.229922 - PubMed
  81. van den Berg F, Cabri J (1999) Angewandte Physiologie–Das Bindegewebe des Bewegungsapparates verstehen und beeinflussen. Georg Thieme Verlag, Stuttgart, pp 17–48 - PubMed
  82. van Wingerden JP, Vleeming A, Snijders CJ, Stoeckart R (1993) A functional-anatomical approach to the spine-pelvis mechanism: interaction between the biceps femoris muscle and the sacrotuberous ligament. Eur Spine J 2(3):140–144. https://doi.org/10.1007/BF00301411 - PubMed
  83. Vleeming A, Pool-Goudzwaard AL, Stoeckart R, van Wingerden JP, Snijders CJ (1995) The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine 20(7): 53–758. https://www.ncbi.nlm.nih.gov/pubmed/7701385 - PubMed
  84. Whalen A, Farrell K, Roberts S, Smith H, Behm DG (2019) Topical Analgesic Improved or Maintained Ballistic Hip Flexion Range of Motion with Treated and Untreated Legs. J Sports Sci Med 18(3):552–558. https://www.ncbi.nlm.nih.gov/pubmed/31427878 - PubMed
  85. Wilke J, Krause F, Vogt L, Banzer W (2016a) What Is evidence-based about myofascial chains: a systematic review. Arch Phys Med Rehabil 97(3):454–461. https://doi.org/10.1016/j.apmr.2015.07.023 - PubMed
  86. Wilke J, Niederer D, Vogt L, Banzer W (2016b) Remote effects of lower limb stretching: preliminary evidence for myofascial connectivity? J Sports Sci 34(22):2145–2148. https://doi.org/10.1080/02640414.2016.1179776 - PubMed
  87. Wilke J, Vogt L, Niederer D, Banzer W (2017) Is remote stretching based on myofascial chains as effective as local exercise? A randomised-controlled trial. J Sports Sci 35(20):2021–2027. https://doi.org/10.1080/02640414.2016.1251606 - PubMed
  88. Wu G, Ekedahl R, Stark B, Carlstedt T, Nilsson B, Hallin RG (1999) Clustering of Pacinian corpuscle afferent fibres in the human median nerve. Exp Brain Res 126:399–409 - PubMed
  89. Yahia LH, Pigeon P, DesRosiers EA (1993) Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng 15(5):425–429. https://doi.org/10.1016/0141-5425(93)90081-9 - PubMed

MeSH terms

Publication Types

Grant support