Display options
Share it on

Rapid Commun Mass Spectrom. 2021 Jun 30;35(11):e9086. doi: 10.1002/rcm.9086.

A new automated method for high-throughput carbon and hydrogen isotope analysis of gaseous and dissolved methane at atmospheric concentrations.

Rapid communications in mass spectrometry : RCM

Andrew C Smith, Steve Welsh, Helen Atkinson, David Harris, Melanie J Leng

Affiliations

  1. National Environmental Isotope Facility, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK.
  2. Sercon Ltd, Crewe Trade Park, Gateway, Crewe CW16JT, UK.

PMID: 33738862 DOI: 10.1002/rcm.9086

Abstract

RATIONALE: The dual isotope ratio analysis, carbon (δ

METHODS: Here we describe a new gas chromatography, pyrolysis/combustion, isotope ratio mass spectrometry (IRMS) system for the automated analysis of either dissolved or gaseous CH

RESULTS: The system routinely achieves precision of <0.3‰ for δ

CONCLUSIONS: This represents the first commercially available IRMS system for dual δ

© 2021 United Kingdom Research and Innovation, as represented by the British Geological Survey. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.

References

  1. Nisbet EG, Fisher RE, Lowry D, et al. Methane mitigation: Methods to reduce emissions, on the path to the Paris agreement. Rev Geophys. 2020;58(1):1-51. https://doi.org/10.1029/2019RG000675 - PubMed
  2. Fisher R, Lowry D, Wilkin O, Sriskantharajah S, Nisbet EG. High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(2):200-208. https://doi.org/10.1002/rcm.2300 - PubMed
  3. Etheridge DM, Steele LP, Francey RJ, Langenfelds RL. Atmospheric methane between 1000 a. D. and present: Evidence of anthropogenic emissions and climatic variability. J Geophys Res. 1998;103(D13):15979-15993. - PubMed
  4. Saunois M, Stavert AR, Poulter B, et al. The global methane budget 2000-2017. Earth Syst Sci Data. 2020;12(3):1561-1623. https://doi.org/10.5194/essd-12-1561-2020 - PubMed
  5. Fujita R, Morimoto S, Maksyutov S, et al. Global and regional CH4 emissions for 1995-2013 derived from atmospheric CH4, δ13C-CH4, and δD-CH4 observations and a chemical transport model. J Geophys Res Atmos. 2020;125(14):e2020JD032903. https://doi.org/10.1029/2020JD032903 - PubMed
  6. Fisher RE, France JL, Lowry D, et al. Measurement of the 13C isotopic signature of methane emissions from northern European wetlands. Global Biogeochem Cycles. 2017;31(3):605-623. https://doi.org/10.1002/2016GB005504 - PubMed
  7. Sanci R, Carbon PHO. Hydrogen isotopes as tracers of methane dynamic in wetlands. Int J Geosci. 2015;6(7):720-728. https://doi.org/10.4236/ijg.2015.67058 - PubMed
  8. Zazzeri G, Lowry D, Holloway R, France JL, Holloway R. Evaluating methane inventories by isotopic analysis in the London region. Sci Rep. 2017;7(1):4854. https://doi.org/10.1038/s41598-017-04802-6 - PubMed
  9. Cahill AG, Beckie R, Ladd B, et al. Advancing knowledge of gas migration and fugitive gas from energy wells in Northeast British Columbia, Canada. Greenh Gases Sci Technol. 2019;9(2):134-151. https://doi.org/10.1002/ghg.1856 - PubMed
  10. Zazzeri G, Lowry D, Fisher RE, France JL, Lanoiselle M, Nisbet EG. Plume mapping and isotopic characterisation of anthropogenic methane sources. Atmos Environ. 2015;110:151-162. https://doi.org/10.1016/j.atmosenv.2015.03.029 - PubMed
  11. Schwietzke S, Sherwood OA, Bruhwiler LMP, et al. Upward revision of global fossil fuel methane emissions based on isotope database. Nature. 2016;538(7623):88-91. https://doi.org/10.1038/nature19797 - PubMed
  12. Bell RA, Darling WG, Ward RS, et al. A baseline survey of dissolved methane in aquifers of Great Britain. Sci Total Environ. 2017;601-602:601-6021803-1813. https://doi.org/10.1016/j.scitotenv.2017.05.191 - PubMed
  13. Osborn SG, Vengosh A, Warner NR, Jackson RB. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci. 2011;108(20):8172-8176. https://doi.org/10.1073/pnas.1100682108 - PubMed
  14. Lowry D, Holmes CW, Rata ND, O'Brien P, Nisbet E. London methane emissions: Use of diurnal changes in concentration and delta C-13 to identify urban sources and verify inventories. J Geophys Res Atmos. 2001;1067427-7448(D7):7427-7448. https://doi.org/10.1029/2000JD900601 - PubMed
  15. Bordeleau G, Rivard C, Lavoie D, et al. Identifying the source of methane in groundwater in a ‘virgin’ area with regards to shale gas exploitation: A multi-isotope approach. Procedia Earth Planet Sci. 2015;13(001):219-222. https://doi.org/10.1016/j.proeps.2015.07.052 - PubMed
  16. Barth-Naftilan E, Sohng J, Saiers JE. Methane in groundwater before, during, and after hydraulic fracturing of the Marcellus shale. Proc Natl Acad Sci. 2018;115(27):6970-6975. https://doi.org/10.1073/pnas.1720898115 - PubMed
  17. Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta. 1980;44(5):649-661. https://doi.org/10.1016/0016-7037(80)90155-6 - PubMed
  18. Whiticar MJ. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol. 1999;161(1-3):291-314. https://doi.org/10.1016/S0009-2541(99)00092-3 - PubMed
  19. Penning H, Plugge CM, Galand PE, Conrad R. Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status. Glob Chang Biol. 2005;11(12):2103-2113. https://doi.org/10.1111/j.1365-2486.2005.01076.x - PubMed
  20. Luxem KE, Leavitt WD, Zhang X, Luxem K, Zhang X. Large hydrogen isotope fractionations distinguish nitrogenase-derived methane from other sources. Appl Environ Microbiol. 2020;609:1-36. - PubMed
  21. Cao C, Zhang M, Li L, et al. Tracing the sources and evolution processes of shale gas by coupling stable (C, H) and noble gas isotopic compositions: Cases from Weiyuan and Changning in Sichuan Basin China. J Nat Gas Sci Eng. 2020;78:103304. https://doi.org/10.1016/j.jngse.2020.103304 - PubMed
  22. Brass M, Röckmann T. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane. Atmos Meas Tech. 2010;31707-1721(6):1707-1721. https://doi.org/10.5194/amt-3-1707-2010 - PubMed
  23. Yarnes C. δ 13 C and δ 2 H measurement of methane from ecological and geological sources by gas chromatography/combustion/pyrolysis isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(9):1036-1044. https://doi.org/10.1002/rcm.6549 - PubMed
  24. Brand WA, Rothe M, Sperlich P, Strube M, Wendeberg M. Automated simultaneous measurement of the δ13C and δ2H values of methane and the δ13C and δ18O values of carbon dioxide in flask air samples using a new multi cryo-trap/gas chromatography/isotope ratio mass spectrometry system. Rapid Commun Mass Spectrom. 2016;301523-1539(13):1523-1539. https://doi.org/10.1002/rcm.7587 - PubMed
  25. Sperlich P, Uitslag NAM, Richter JM, et al. Development and evaluation of a suite of isotope reference gases for methane in air. Atmos Meas Tech Discuss. 2016(June);1-24. https://doi.org/10.5194/amt-2016-15 - PubMed
  26. Santrock J, Studley SA, Hayes JM. Isotopic analyses based on the mass spectra of carbon dioxide. Anal Chem. 1985;57(7):1444-1448. https://doi.org/10.1021/ac00284a060 - PubMed
  27. Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D. Global atmospheric methane: Budget, changes and dangers. Philos Trans R Soc A Math Phys Eng Sci. 2011;369(1943):2058-2072. https://doi.org/10.1098/rsta.2010.0341 - PubMed

Publication Types

Grant support