Display options
Share it on

Cancer Immunol Res. 2021 Jun;9(6):651-664. doi: 10.1158/2326-6066.CIR-20-0445. Epub 2021 Mar 24.

Chronic Adrenergic Stress Contributes to Metabolic Dysfunction and an Exhausted Phenotype in T Cells in the Tumor Microenvironment.

Cancer immunology research

Guanxi Qiao, Minhui Chen, Hemn Mohammadpour, Cameron R MacDonald, Mark J Bucsek, Bonnie L Hylander, Joseph J Barbi, Elizabeth A Repasky

Affiliations

  1. Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
  2. Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York. [email protected].

PMID: 33762351 PMCID: PMC8355045 DOI: 10.1158/2326-6066.CIR-20-0445

Abstract

Metabolic dysfunction and exhaustion in tumor-infiltrating T cells have been linked to ineffectual antitumor immunity and the failure of immune checkpoint inhibitor therapy. We report here that chronic stress plays a previously unrecognized role in regulating the state of T cells in the tumor microenvironment (TME). Using two mouse tumor models, we found that blocking chronic adrenergic stress signaling using the pan β-blocker propranolol or by using mice lacking the β2-adrenergic receptor (β2-AR) results in reduced tumor growth rates with significantly fewer tumor-infiltrating T cells that express markers of exhaustion, with a concomitant increase in progenitor exhausted T cells. We also report that blocking β-AR signaling in mice increases glycolysis and oxidative phosphorylation in tumor-infiltrating lymphocytes (TIL), which associated with increased expression of the costimulatory molecule CD28 and increased antitumor effector functions, including increased cytokine production. Using T cells from Nur77-GFP reporter mice to monitor T-cell activation, we observed that stress-induced β-AR signaling suppresses T-cell receptor (TCR) signaling. Together, these data suggest that chronic stress-induced adrenergic receptor signaling serves as a "checkpoint" of immune responses and contributes to immunosuppression in the TME by promoting T-cell metabolic dysfunction and exhaustion. These results also support the possibility that chronic stress, which unfortunately is increased in many patients with cancer following their diagnoses, could be exerting a major negative influence on the outcome of therapies that depend upon the status of TILs and support the use of strategies to reduce stress or β-AR signaling in combination with immunotherapy.

©2021 American Association for Cancer Research.

References

  1. Nat Rev Immunol. 2020 Feb;20(2):128-136 - PubMed
  2. Nat Rev Cancer. 2006 Mar;6(3):240-8 - PubMed
  3. Brain Behav Immun. 2011 Feb;25(2):250-5 - PubMed
  4. J Clin Invest. 2019 Dec 2;129(12):5537-5552 - PubMed
  5. Science. 2017 Mar 31;355(6332):1423-1427 - PubMed
  6. Nat Commun. 2016 Feb 17;7:10501 - PubMed
  7. Cancer Immunol Res. 2019 Mar;7(3):510-525 - PubMed
  8. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5300-5 - PubMed
  9. Science. 2013 Jul 12;341(6142):1236361 - PubMed
  10. Cell. 2015 Sep 10;162(6):1229-41 - PubMed
  11. Immunity. 2016 Sep 20;45(3):701-703 - PubMed
  12. Nat Rev Cancer. 2020 Mar;20(3):143-157 - PubMed
  13. Nat Immunol. 2011 Jun;12(6):492-9 - PubMed
  14. Trends Cancer. 2016 Apr;2(4):166-175 - PubMed
  15. Nat Commun. 2015 Mar 26;6:6692 - PubMed
  16. Clin Cancer Res. 2019 Aug 1;25(15):4663-4673 - PubMed
  17. Eur J Immunol. 2016 Aug;46(8):1948-58 - PubMed
  18. Nat Immunol. 2019 Mar;20(3):326-336 - PubMed
  19. Cancer Res. 2017 Oct 15;77(20):5639-5651 - PubMed
  20. Front Immunol. 2018 Feb 06;9:164 - PubMed
  21. J Immunol. 2015 Nov 15;195(10):5045-54 - PubMed
  22. Science. 2017 Mar 31;355(6332):1386 - PubMed
  23. Immunity. 2016 Aug 16;45(2):358-73 - PubMed
  24. Auton Neurosci. 2014 May;182:15-41 - PubMed
  25. Sci Transl Med. 2015 Mar 4;7(277):277ra30 - PubMed
  26. Immunity. 2019 Jan 15;50(1):181-194.e6 - PubMed
  27. Cancer Immunol Immunother. 2019 Jan;68(1):11-22 - PubMed
  28. Science. 2017 Mar 31;355(6332):1428-1433 - PubMed
  29. Cell. 2017 Oct 5;171(2):385-397.e11 - PubMed
  30. Sci Immunol. 2019 Jan 25;4(31): - PubMed
  31. J Immunol. 2016 Sep 15;197(6):2532-40 - PubMed
  32. Nat Med. 2018 May;24(5):541-550 - PubMed
  33. Oncoimmunology. 2017 Dec 21;7(3):e1405205 - PubMed
  34. Nat Immunol. 2021 Feb;22(2):205-215 - PubMed
  35. Cell. 2015 Sep 10;162(6):1217-28 - PubMed
  36. Nat Immunol. 2020 Sep;21(9):1022-1033 - PubMed
  37. Nat Commun. 2020 Apr 14;11(1):1821 - PubMed
  38. Nat Immunol. 2020 Dec;21(12):1540-1551 - PubMed
  39. Nat Rev Immunol. 2005 Mar;5(3):243-51 - PubMed
  40. Clin Cancer Res. 2021 Jan 1;27(1):87-95 - PubMed
  41. Science. 2017 Oct 20;358(6361):321-326 - PubMed
  42. Nat Commun. 2015 Mar 10;6:6426 - PubMed
  43. Cancer Immunol Immunother. 2014 Nov;63(11):1115-28 - PubMed
  44. Brain Behav Immun. 2005 Jan;19(1):3-11 - PubMed
  45. Immunity. 2020 May 19;52(5):825-841.e8 - PubMed
  46. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20176-81 - PubMed
  47. J Exp Med. 2015 Aug 24;212(9):1345-60 - PubMed
  48. Clin Cancer Res. 2020 Apr 15;26(8):1803-1811 - PubMed
  49. Nat Neurosci. 2019 Aug;22(8):1289-1305 - PubMed
  50. Cell Rep. 2018 Feb 6;22(6):1509-1521 - PubMed
  51. Immunity. 2016 Aug 16;45(2):374-88 - PubMed
  52. Cancer. 2019 May 1;125(9):1417-1431 - PubMed
  53. Cancer. 2008 Dec 15;113(12):3450-8 - PubMed

Publication Types

Grant support