Display options
Share it on

Rice (N Y). 2021 Mar 19;14(1):31. doi: 10.1186/s12284-021-00473-0.

The Rice GLYCINE-RICH PROTEIN 3 Confers Drought Tolerance by Regulating mRNA Stability of ROS Scavenging-Related Genes.

Rice (New York, N.Y.)

Jae Sung Shim, Su-Hyun Park, Dong-Keun Lee, Youn Shic Kim, Soo-Chul Park, Mark Christian Felipe R Redillas, Jun Sung Seo, Ju-Kon Kim

Affiliations

  1. Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
  2. School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea.
  3. Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
  4. E GREEN GLOBAL, Gunpo, 15843, South Korea.
  5. Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, 24341, South Korea.
  6. Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, South Korea.
  7. Biology Department, De La Salle University, 0922, Manila, Philippines.
  8. Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea. [email protected].
  9. Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea. [email protected].

PMID: 33742286 PMCID: PMC7979854 DOI: 10.1186/s12284-021-00473-0

Abstract

BACKGROUND: Plant glycine-rich proteins are categorized into several classes based on their protein structures. The glycine-rich RNA binding proteins (GRPs) are members of class IV subfamily possessing N-terminus RNA-recognition motifs (RRMs) and proposed to be involved in post-transcriptional regulation of its target transcripts. GRPs are involved in developmental process and cellular stress responses, but the molecular mechanisms underlying these regulations are still elusive.

RESULTS: Here, we report the functional characterization of rice GLYCINE-RICH PROTEIN 3 (OsGRP3) and its physiological roles in drought stress response. Both drought stress and ABA induce the expression of OsGRP3. Transgenic plants overexpressing OsGRP3 (OsGRP3

CONCLUSION: OsGRP3 plays a positive regulator in rice drought tolerance and modulates the transcript level and mRNA stability of stress-responsive genes, including ROS-related genes. Moreover, OsGRP3 contributes to the reduction of ROS accumulation during drought stress. Our results suggested that OsGRP3 alleviates ROS accumulation by regulating ROS-related genes' mRNA stability under drought stress, which confers drought tolerance.

Keywords: Cytoplasmic foci; Drought tolerance; OsGRP3; RNA-IP; mRNA stability

References

  1. Trends Plant Sci. 2013 Feb;18(2):100-6 - PubMed
  2. PLoS Genet. 2011 Apr;7(4):e1002020 - PubMed
  3. Planta. 2007 May;225(6):1339-51 - PubMed
  4. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  5. Front Plant Sci. 2015 Dec 08;6:1092 - PubMed
  6. Plant Biotechnol J. 2019 Nov;17(11):2123-2142 - PubMed
  7. J Cell Biol. 2005 Jun 20;169(6):871-84 - PubMed
  8. Plant Physiol. 2002 Aug;129(4):1473-81 - PubMed
  9. Plant J. 2006 Mar;45(6):982-93 - PubMed
  10. Mol Plant. 2013 Sep;6(5):1487-502 - PubMed
  11. J Exp Bot. 2011 Jul;62(11):4003-11 - PubMed
  12. Plant Physiol. 2018 Jan;176(1):254-269 - PubMed
  13. Plant Physiol. 2010 May;153(1):185-97 - PubMed
  14. Plant J. 2008 Aug;55(3):455-66 - PubMed
  15. Plant Physiol. 2011 Apr;155(4):1750-1 - PubMed
  16. Plant Physiol. 2001 Feb;125(2):673-82 - PubMed
  17. Nucleic Acids Res. 2012 Dec;40(22):11240-55 - PubMed
  18. BMC Plant Biol. 2012 Jul 10;12:107 - PubMed
  19. Trends Plant Sci. 2009 Apr;14(4):229-36 - PubMed
  20. Nucleic Acids Res. 2007;35(2):506-16 - PubMed
  21. Genome Biol. 2017 Oct 31;18(1):204 - PubMed
  22. Mol Neurodegener. 2012 Nov 20;7:56 - PubMed
  23. Plant Physiol. 2013 Mar;161(3):1202-16 - PubMed
  24. Genet Mol Res. 2016 Oct 24;15(4): - PubMed
  25. Front Plant Sci. 2018 Apr 23;9:540 - PubMed
  26. Plant Sci. 2015 Dec;241:199-210 - PubMed
  27. PLoS Pathog. 2012 Jan;8(1):e1002467 - PubMed
  28. Mol Cells. 2014 Jul;37(7):532-9 - PubMed
  29. Physiol Plant. 2015 Jan;153(1):1-11 - PubMed
  30. Planta. 2003 Mar;216(5):824-33 - PubMed
  31. Microbiol Res. 2018 Jul - Aug;212-213:29-37 - PubMed
  32. J Exp Bot. 2010 May;61(9):2317-25 - PubMed
  33. Front Plant Sci. 2018 Mar 08;9:302 - PubMed
  34. Mol Plant. 2015 Jan;8(1):68-82 - PubMed
  35. Traffic. 2011 Jun;12(6):693-702 - PubMed
  36. Mol Biol Rep. 2010 Feb;37(2):839-45 - PubMed
  37. Plant Sci. 2014 Jan;214:106-12 - PubMed
  38. Plant Cell. 2018 Jun;30(6):1258-1276 - PubMed
  39. Nat Protoc. 2006;1(1):302-7 - PubMed
  40. Plant Physiol. 2010 Jan;152(1):151-65 - PubMed
  41. Nucleic Acids Res. 2008 Dec;36(22):6977-87 - PubMed
  42. Plant Physiol Biochem. 2010 Dec;48(12):909-30 - PubMed
  43. PLoS One. 2012;7(9):e45117 - PubMed
  44. Plant J. 2007 May;50(3):439-51 - PubMed
  45. Plant Physiol. 2012 Jul;159(3):1111-24 - PubMed
  46. Plant Physiol. 2005 Aug;138(4):2374-85 - PubMed
  47. BMC Plant Biol. 2019 Jan 22;19(1):38 - PubMed
  48. Mol Biol Rep. 2014 Jan;41(1):439-45 - PubMed
  49. BMC Plant Biol. 2010 Oct 14;10:221 - PubMed
  50. Nat Protoc. 2006;1(2):577-80 - PubMed
  51. DNA Res. 2005 Feb 28;12(1):9-26 - PubMed
  52. Plant Cell Environ. 2014 Mar;37(3):696-706 - PubMed
  53. J Biol Chem. 2001 Jul 13;276(28):26688-93 - PubMed
  54. Nat Prod Rep. 2011 Apr;28(4):663-92 - PubMed
  55. Front Plant Sci. 2018 Mar 09;9:310 - PubMed
  56. Plant Pathol J. 2016 Dec;32(6):552-562 - PubMed
  57. Plant Cell Physiol. 2007 Aug;48(8):1170-81 - PubMed
  58. Plant Cell Environ. 2013 Aug;36(8):1507-19 - PubMed
  59. J Exp Bot. 2011 Jan;62(3):869-82 - PubMed
  60. Plant Mol Biol. 1995 Jun;28(3):455-71 - PubMed

Publication Types

Grant support