Display options
Share it on

Angew Chem Int Ed Engl. 2021 Jul 05;60(28):15582-15589. doi: 10.1002/anie.202104231. Epub 2021 Jun 03.

Halide Replacement with Complete Preservation of Crystal Lattice in Mixed-Anion Lanthanide Oxyhalides.

Angewandte Chemie (International ed. in English)

Malsha Udayakantha, Joseph V Handy, Rachel D Davidson, Jagjit Kaur, Graciela Villalpando, Lucia Zuin, Sudip Chakraborty, Sarbajit Banerjee

Affiliations

  1. Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA.
  2. Materials Theory for Energy Scavenging (MATES) Lab, Department of Physics, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
  3. Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 2V3, Canada.

PMID: 33783069 DOI: 10.1002/anie.202104231

Abstract

A challenge in anion control in periodic solids is to preserve the crystal lattice while substituting for different anions of widely varying size and hardness. Post-synthetic modification routes that place cations or anions in non-equilibrium configurations are promising; however, such methods remain relatively unexplored for anion placement. Here, we report the synthesis of LaOI nanocrystals by a non-hydrolytic sol-gel condensation reaction and their transformation into LaOBr, LaOCl, and LaOF nanocrystals along hard-soft acid-base principles using post-synthetic metathesis reactions with ammonium halides. Anion displacement proceeds along halide planes, preserving the tetragonal matlockite structure. Energy-variant X-ray excited optical luminesce signatures of alloyed Tb

© 2021 Wiley-VCH GmbH.

Keywords: HSAB theory; XEOL; ion exchange; lanthanide oxyhalides; topochemistry

References

  1. H. Suzuki, H. Kunioku, M. Higashi, O. Tomita, D. Kato, H. Kageyama, R. Abe, Chem. Mater. 2018, 30, 5862-5869. - PubMed
  2. M. Jansen, H. P. Letschert, Nature 2000, 404, 980-982. - PubMed
  3. M. Udayakantha, P. Schofield, G. R. Waetzig, S. Banerjee, J. Solid State Chem. 2019, 270, 569-592. - PubMed
  4. H. Kageyama, K. Hayashi, K. Maeda, J. P. Attfield, Z. Hiroi, J. M. Rondinelli, K. R. Poeppelmeier, Nat. Commun. 2018, 9, 772. - PubMed
  5. M. C. Brennan, S. Draguta, P. V. Kamat, M. Kuno, ACS Energy Lett. 2018, 3, 204-213. - PubMed
  6. K. T. Dissanayake, D. K. Amarasinghe, L. Suescun, F. A. Rabuffetti, Chem. Mater. 2019, 31, 6262-6267. - PubMed
  7. A. O. Oliynyk, L. A. Adutwum, J. J. Harynuk, A. Mar, Chem. Mater. 2016, 28, 6672-6681. - PubMed
  8. W. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D. Richards, A. C. Gamst, K. A. Persson, G. Ceder, Sci. Adv. 2016, 2, e1600225. - PubMed
  9. W. Sun, D. A. Kitchaev, D. Kramer, G. Ceder, Nat. Commun. 2019, 10, 573. - PubMed
  10. J. Cho, P. V. Kamat, Chem. Mater. 2020, 32, 6206-6212. - PubMed
  11. A. Parija, G. R. Waetzig, J. L. Andrews, S. Banerjee, J. Phys. Chem. C 2018, 122, 25709-25728. - PubMed
  12. A. J. Martinolich, J. R. Neilson, Chem. Mater. 2017, 29, 479-489. - PubMed
  13. R. E. Schaak, T. E. Mallouk, Chem. Mater. 2002, 14, 1455-1471. - PubMed
  14. D. H. Son, S. M. Hughes, Y. Yin, A. P. Alvisatos, Science 2004, 306, 1009-1012. - PubMed
  15. B. C. Steimle, J. L. Fenton, R. E. Schaak, Science 2020, 367, 418-424. - PubMed
  16. J. V. Handy, Y. Luo, J. L. Andrews, N. Bhuvanesh, S. Banerjee, Angew. Chem. Int. Ed. 2020, 59, 16385-16392; - PubMed
  17. Angew. Chem. 2020, 132, 16527-16534. - PubMed
  18. J. P. Laval, A. Taoudi, A. Abaouz, B. Frit, J. Solid State Chem. 1995, 119, 125-130. - PubMed
  19. M. Glätzle, M. Schauperl, C. Hejny, M. Tribus, K. R. Liedl, H. Huppertz, Z. Anorg. Allg. Chem. 2016, 642, 1134-1142. - PubMed
  20. G. Blasse, A. Bril, J. Chem. Phys. 1967, 46, 836. - PubMed
  21. J. G. Rabatin, E. Bradshaw, patent USRE28592E, 1972. - PubMed
  22. N. Imanaka, K. Okamoto, G. Adachi, Angew. Chem. Int. Ed. 2002, 41, 3890-3892; - PubMed
  23. Angew. Chem. 2002, 114, 4046-4048. - PubMed
  24. S. G. Podkolzin, E. E. Stangland, M. E. Jones, P. Elvira, J. A. Lercher, J. Am. Chem. Soc. 2007, 129, 2569-2576. - PubMed
  25. G. R. Waetzig, G. A. Horrocks, R. D. Davidson, J. W. Jude, G. V. Villalpando, L. Zuin, S. Banerjee, J. Phys. Chem. C 2018, 122, 16412-16423. - PubMed
  26. G. R. Waetzig, G. A. Horrocks, J. W. Jude, G. V. Villalpando, L. Zuin, S. Banerjee, Inorg. Chem. 2018, 57, 5842-5849. - PubMed
  27. D. Starick, S. I. Golovkova, A. M. Gurvic, G. Herzog, J. Lumin. 1988, 40-41, 199-200. - PubMed
  28. K. R. Kort, S. Banerjee, Inorg. Chem. 2011, 50, 5539-5544. - PubMed
  29. Y. D. Eagleman, E. Bourret-Courchesne, S. E. Derenzo, J. Lumin. 2011, 131, 669-675. - PubMed
  30. P. K. Chattaraj, H. Lee, R. G. Parr, J. Am. Chem. Soc. 1991, 113, 1855-1857. - PubMed
  31. R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533-3539. - PubMed
  32. P. K. Chattaraj, B. Maiti, J. Am. Chem. Soc. 2003, 125, 2705-2710. - PubMed
  33. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC, Boca Raton, 2007. - PubMed
  34. N. Nunotani, M. R. I. Bin Misran, M. Inada, T. Uchiyama, Y. Uchimoto, N. Imanaka, J. Am. Ceram. Soc. 2020, 103, 297-303. - PubMed
  35. T. Petzel, V. Marx, B. Hormann, J. Alloys Compd. 1993, 200, 27-31. - PubMed
  36. W. H. Zachariasen, Acta Crystallogr. 1948, 1, 268-269. - PubMed
  37. J.-C. G. Bünzli, C. Piguet, Chem. Soc. Rev. 2005, 34, 1048. - PubMed
  38. G. R. Waetzig, G. A. Horrocks, J. W. Jude, L. Zuin, S. Banerjee, Nanoscale 2016, 8, 979-986. - PubMed
  39. J. Hölsä, M. Leskelä, Phys. Status Solidi B 1981, 103, 797-801. - PubMed
  40. D. B. M. Klaassen, C. M. G. van Leuken, K. M. H. Maessen, Phys. Rev. B 1987, 36, 4407-4412. - PubMed
  41. J. Li, L. Liu, T.-K. Sham, Chem. Mater. 2015, 27, 3021-3029. - PubMed
  42. M. J. Ward, J. G. Smith, T. Z. Regier, T. K. Sham, J. Phys. Conf. Ser. 2013, 425, 132009. - PubMed
  43. K. T. Dissanayake, F. A. Rabuffetti, Chem. Mater. 2018, 30, 2453-2462. - PubMed

Publication Types

Grant support