Display options
Share it on

NPJ Genom Med. 2021 Mar 25;6(1):25. doi: 10.1038/s41525-021-00188-7.

Comparison of the diagnostic yield of aCGH and genome-wide sequencing across different neurodevelopmental disorders.

NPJ genomic medicine

Francisco Martinez-Granero, Fiona Blanco-Kelly, Carolina Sanchez-Jimeno, Almudena Avila-Fernandez, Ana Arteche, Ana Bustamante-Aragones, Cristina Rodilla, Elvira Rodríguez-Pinilla, Rosa Riveiro-Alvarez, Saoud Tahsin-Swafiri, Maria Jose Trujillo-Tiebas, Carmen Ayuso, Marta Rodríguez de Alba, Isabel Lorda-Sanchez, Berta Almoguera

Affiliations

  1. Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.
  2. Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
  3. Department of Genetics, 12 de Octubre University Hospital, Madrid, Spain.
  4. Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain. [email protected].
  5. Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain. [email protected].

PMID: 33767182 PMCID: PMC7994713 DOI: 10.1038/s41525-021-00188-7

Abstract

Most consensus recommendations for the genetic diagnosis of neurodevelopmental disorders (NDDs) do not include the use of next generation sequencing (NGS) and are still based on chromosomal microarrays, such as comparative genomic hybridization array (aCGH). This study compares the diagnostic yield obtained by aCGH and clinical exome sequencing in NDD globally and its spectrum of disorders. To that end, 1412 patients clinically diagnosed with NDDs and studied with aCGH were classified into phenotype categories: global developmental delay/intellectual disability (GDD/ID); autism spectrum disorder (ASD); and other NDDs. These categories were further subclassified based on the most frequent accompanying signs and symptoms into isolated forms, forms with epilepsy; forms with micro/macrocephaly and syndromic forms. Two hundred and forty-five patients of the 1412 were subjected to clinical exome sequencing. Diagnostic yield of aCGH and clinical exome sequencing, expressed as the number of solved cases, was compared for each phenotype category and subcategory. Clinical exome sequencing was superior than aCGH for all cases except for isolated ASD, with no additional cases solved by NGS. Globally, clinical exome sequencing solved 20% of cases (versus 5.7% by aCGH) and the diagnostic yield was highest for all forms of GDD/ID and lowest for Other NDDs (7.1% versus 1.4% by aCGH) and ASD (6.1% versus 3% by aCGH). In the majority of cases, diagnostic yield was higher in the phenotype subcategories than in the mother category. These results suggest that NGS could be used as a first-tier test in the diagnostic algorithm of all NDDs followed by aCGH when necessary.

References

  1. Genet Med. 2019 Nov;21(11):2413-2421 - PubMed
  2. Genet Med. 2017 Feb;19(2):209-214 - PubMed
  3. Ital J Pediatr. 2014 Apr 28;40:39 - PubMed
  4. Gene. 2019 Jun 5;700:168-175 - PubMed
  5. Am J Hum Genet. 2016 Sep 1;99(3):540-554 - PubMed
  6. Clin Genet. 2016 Jun;89(6):700-7 - PubMed
  7. J Med Genet. 2019 Oct;56(10):701-710 - PubMed
  8. Trends Genet. 2019 Nov;35(11):852-867 - PubMed
  9. Cytogenet Genome Res. 2011;135(3-4):222-7 - PubMed
  10. NPJ Genom Med. 2018 Jul 9;3:16 - PubMed
  11. Nature. 2014 Nov 13;515(7526):216-21 - PubMed
  12. An Pediatr (Barc). 2018 Jul;89(1):3-11 - PubMed
  13. Child Dev. 2013 Jan-Feb;84(1):121-32 - PubMed
  14. Hum Genet. 1999 Jan;104(1):49-55 - PubMed
  15. Eur J Hum Genet. 2012 Feb;20(2):161-5 - PubMed
  16. Nat Neurosci. 2017 Aug;20(8):1043-1051 - PubMed
  17. Genet Med. 2010 Nov;12(11):742-5 - PubMed
  18. Eur J Paediatr Neurol. 2013 Nov;17(6):589-99 - PubMed
  19. Ann Lab Med. 2019 May;39(3):299-310 - PubMed
  20. Front Immunol. 2019 Oct 01;10:2325 - PubMed
  21. Lancet Psychiatry. 2017 Apr;4(4):339-346 - PubMed
  22. Genet Med. 2020 Jun;22(6):1036-1039 - PubMed
  23. Mol Genet Genomic Med. 2020 Jan;8(1):e1056 - PubMed
  24. Eur J Hum Genet. 2018 Nov;26(11):1566-1571 - PubMed
  25. Cell. 2019 Aug 8;178(4):850-866.e26 - PubMed
  26. Genome Med. 2019 Nov 7;11(1):68 - PubMed
  27. Am J Hum Genet. 2010 May 14;86(5):749-64 - PubMed
  28. Genet Med. 2011 Sep;13(9):770-6 - PubMed
  29. Genet Med. 2015 May;17(5):405-24 - PubMed
  30. Mol Vis. 2017 Sep 20;23:649-659 - PubMed
  31. Neurologia. 2017 Nov - Dec;32(9):568-578 - PubMed
  32. Annu Rev Genomics Hum Genet. 2010;11:161-87 - PubMed
  33. Nat Rev Genet. 2017 Jun;18(6):362-376 - PubMed
  34. Eur J Paediatr Neurol. 2014 Sep;18(5):558-66 - PubMed
  35. Genet Med. 2013 May;15(5):399-407 - PubMed
  36. J Med Case Rep. 2019 Aug 23;13(1):266 - PubMed
  37. Nat Rev Genet. 2014 Feb;15(2):133-41 - PubMed
  38. Clin Genet. 2018 Dec;94(6):495-501 - PubMed
  39. Cell. 2020 Feb 6;180(3):568-584.e23 - PubMed
  40. Ann Lab Med. 2018 Sep;38(5):473-480 - PubMed
  41. Eur J Hum Genet. 2016 Jan;24(1):2-5 - PubMed
  42. Genet Med. 2018 Dec;20(12):1564-1574 - PubMed

Publication Types

Grant support