Display options
Share it on

Eur J Hum Genet. 2021 Jun;29(6):965-976. doi: 10.1038/s41431-021-00833-w. Epub 2021 Mar 25.

Autosomal recessive cataract (CTRCT18) in the Yakut population isolate of Eastern Siberia: a novel founder variant in the FYCO1 gene.

European journal of human genetics : EJHG

Nikolay A Barashkov, Fedor A Konovalov, Tuyara V Borisova, Fedor M Teryutin, Aisen V Solovyev, Vera G Pshennikova, Nadejda V Sapojnikova, Lyubov S Vychuzhina, Georgii P Romanov, Nyurgun N Gotovtsev, Igor V Morozov, Alexander A Bondar, Fedor A Platonov, Tatiana E Burtseva, Elza K Khusnutdinova, Olga L Posukh, Sardana A Fedorova

Affiliations

  1. Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation. [email protected].
  2. Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation. [email protected].
  3. Genomed Ltd, Moscow, Russian Federation.
  4. Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation.
  5. Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation.
  6. Department of Ophthalmology, Republican Hospital #1 - National Centre of Medicine, Yakutsk, Russian Federation.
  7. SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.
  8. Novosibirsk State University, Novosibirsk, Russian Federation.
  9. Medical Institute, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation.
  10. Laboratory of the Children Health Monitoring and Medical-environmental Research, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russian Federation.
  11. Laboratory of Human Molecular Genetics, Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, Ufa, Russian Federation.
  12. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russian Federation.
  13. Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.

PMID: 33767456 PMCID: PMC8187664 DOI: 10.1038/s41431-021-00833-w

Abstract

Congenital autosomal recessive cataract with unknown genetic etiology is one of the most common Mendelian diseases among the Turkic-speaking Yakut population (Eastern Siberia, Russia). To identify the genetic cause of congenital cataract spread in this population, we performed whole-exome sequencing (Illumina NextSeq 500) in one Yakut family with three affected siblings whose parents had preserved vision. We have revealed the novel homozygous c.1621C>T transition leading to premature stop codon p.(Gln541*) in exon 8 of the FYCO1 gene (NM_024513.4). Subsequent screening of c.1621C>T p.(Gln541*) revealed this variant in a homozygous state in 25 out of 29 Yakut families with congenital cataract (86%). Among 424 healthy individuals from seven populations of Eastern Siberia (Russians, Yakuts, Evenks, Evens, Dolgans, Chukchi, and Yukaghirs), the highest carrier frequency of c.1621C>T p.(Gln541*) was found in the Yakut population (7.9%). DNA samples of 25 homozygous for c.1621C>T p.(Gln541*) patients with congenital cataract and 114 unaffected unrelated individuals without this variant were used for a haplotype analysis based on the genotyping of six STR markers (D3S3512, D3S3685, D3S3582, D3S3561, D3S1289, and D3S3698). The structure of the identified haplotypes indicates a common origin for all of the studied mutant chromosomes bearing c.1621C>T p.(Gln541*). The age of the с.1621C>T p.(Gln541*) founder haplotype was estimated to be approximately 260 ± 65 years (10 generations). These findings characterize Eastern Siberia as the region of the world with the most extensive accumulation of the unique variant c.1621C>T p.(Gln541*) in the FYCO1 gene as a result of the founder effect.

References

  1. Robinson G, Jan J, Kinnis C. Congenital ocular blindness in children, 1945 to 1984. Am J Dis Child. 1987;141:1321–4. https://doi.org/10.1001/archpedi.1987.04460120087041 . - PubMed
  2. Lambert S, Drack A. Infantile cataracts. Surv Ophthalmol. 1996;40:427–58. https://doi.org/10.1016/S0039-6257(96)82011-X . - PubMed
  3. Merin S. Inherited cataracts. In: Merin S, editor. Inherited eye diseases. New York: Marcel Dekker, Inc.; 1991. - PubMed
  4. Shiels A, Bennett T, Hejtmancik J. Cat-Map: putting cataract on the map. Mol Vis. 2010;16:2007–15. - PubMed
  5. Pras E, Frydman M, Levy-Nissenbaum E, Bakhan T, Raz J, Assia E, et al. A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Investig Ophthalmol Vis Sci. 2000;41:3511–5. - PubMed
  6. Pras E, Bakhan T, Levy-Nissenbaum E, Lahat H, Assia E, Garzozi H, et al. A gene causing autosomal recessive cataract maps to the short arm of chromosome 3. Isr Med Assoc J. 2001;3:559–62. - PubMed
  7. Pras E, Levy-Nissenbaum E, Bakhan T, Lahat H, Assia E, Geffen-Carmi N, et al. A missense mutation in the LIM2 gene is associated with autosomal recessive presenile cataract in an inbred Iraqi Jewish family. Am J Hum Genet. 2002;70:1363–7. https://doi.org/10.1086/340318 . - PubMed
  8. Pras E, Raz J, Yahalom V, Frydman M, Garzozi H, Hejtmancik J, et al. A nonsense mutation in the glucosaminyl (N-acetyl) transferase 2 gene (GCNT2): association with autosomal recessive congenital cataracts. Investig Ophthalmol Vis Sci. 2004;45:1940–5. https://doi.org/10.1167/iovs.03-1117 . - PubMed
  9. Smaoui N, Beltaief O, BenHamed S, M’Rad R, Maazoul F, Ouertani A, et al. A homozygous splice mutation in the HSF4 gene is associated with an autosomal recessive congenital cataract. Investig Ophthalmol Vis Sci. 2004;45:2716–21. https://doi.org/10.1167/iovs.03-1370 . - PubMed
  10. Riazuddin S, Yasmeen A, Yao W, Sergeev Y, Zhang Q, Zulfiqar F, et al. Mutations in beta B3-crystallin associated with autosomal recessive cataract in two Pakistani families. Investig Ophthalmol Vis Sci. 2005;46:2100–6. https://doi.org/10.1167/iovs.04-1481 . - PubMed
  11. Cohen D, Bar-Yosef U, Levy J, Gradstein L, Belfair N, Ofir R, et al. Homozygous CRYBB1 deletion mutation underlies autosomal recessive congenital cataract. Investig Ophthalmol Vis Sci. 2007;48:2208–13. https://doi.org/10.1167/iovs.06-1019 . - PubMed
  12. Ponnam S, Ramesha K, Tejwani S, Matalia J, Kannabiran C. A missense mutation in LIM2 causes autosomal recessive congenital cataract. Mol Vis. 2008;14:1204–8. - PubMed
  13. Ponnam S, Ramesha K, Tejwani S, Ramamurthy B, Kannabiran C. Mutation of the gap junction protein alpha 8 (GJA8) gene causes autosomal recessive cataract. J Med Genet. 2007;44:e85. https://doi.org/10.1136/jmg.2007.050138 . - PubMed
  14. Ramachandran R, Perumalsamy V, Hejtmancik J. Autosomal recessive juvenile onset cataract associated with mutation in BFSP1. Hum Genet. 2007;121:475–82. https://doi.org/10.1007/s00439-006-0319-6 . - PubMed
  15. Kaul H, Riazuddin S, Shahid M, Kousar S, Butt N, Zafar A, et al. Autosomal recessive congenital cataract linked to EPHA2 in a consanguineous Pakistani family. Mol Vis. 2010;16:511–7. - PubMed
  16. Pankiv S, Johansen T. FYCO1 linking autophagosomes to microtubule plus end-directing molecular motors. Autophagy. 2010;6:550–2. https://doi.org/10.4161/auto.6.4.11670 . - PubMed
  17. Chen J, Ma Z, Jiao X, Fariss R, Kantorow W, Kantorow M, et al. Mutations in FYCO1 cause autosomal-recessive congenital cataracts. Am J Hum Genet. 2011;88:827–38. https://doi.org/10.1016/j.ajhg.2011.05.008 . - PubMed
  18. Aldahmesh M, Khan A, Mohamed J, Alghamdi M, Alkuraya F. Identification of a truncation mutation of acylglycerol kinase (AGK) gene in a novel autosomal recessive cataract locus. Hum Mutat. 2012;33:960–2. https://doi.org/10.1002/humu.22071 . - PubMed
  19. Evers C, Paramasivam N, Hinderhofer K, Fischer C, Granzow M, Schmidt-Bacher A, et al. SIPA1L3 identified by linkage analysis and whole-exome sequencing as a novel gene for autosomal recessive congenital cataract. Eur J Hum Genet. 2015;23:1627–33. - PubMed
  20. Ansar M, Chung H, Taylor RL, Nazir A, Imtiaz S, Sarwar MT, et al. Bi-allelic loss-of-function variants in DNMBP cause infantile cataracts. Am J Hum Genet. 2018;103:568–78. https://doi.org/10.1016/j.ajhg.2018.09.004 . - PubMed
  21. Jiao X, Khan SY, Irum B, Khan AO, Wang Q, Kabir F, et al. Missense mutations in CRYAB are liable for recessive congenital cataracts. PLoS ONE. 2015;10:e0137973. https://doi.org/10.1371/journal.pone.0137973 . - PubMed
  22. Khan SY, Vasanth S, Kabir F, Gottsch JD, Khan AO, Chaerkady R, et al. FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1. Nat Commun. 2016;7:10953. https://doi.org/10.1038/ncomms10953 . - PubMed
  23. Lachke SA, Alkuraya FS, Kneeland SC, Ohn T, Aboukhalil A, Howell GR, et al. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science. 2011;331:1571–6. https://doi.org/10.1126/science.1195970 . - PubMed
  24. Yasmeen A, Riazuddin SA, Kaul H, Mohsin S, Khan M, Qazi ZA, et al. Autosomal recessive congenital cataract in consanguineous Pakistani families is associated with mutations in GALK1. Mol Vis. 2010;16:682–8. - PubMed
  25. Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015;523:607–11. https://doi.org/10.1038/nature14650 . - PubMed
  26. Micheal S, Niewold ITSGl, Siddiqui SN, Zafar SN, Khan MI, Bergen AA. Delineation of novel autosomal recessive mutation in GJA3 and autosomal dominant mutations in GJA8 in Pakistani congenital cataract families. Genes. 2018;9:112. https://doi.org/10.3390/genes9020112 . - PubMed
  27. Chacon-Camacho O, Buentello-Volante B, Velazquez-Montoya R, Ayala-Ramirez R, Zenteno J. Homozygosity mapping identifies a GALK1 mutation as the cause of autosomal recessive congenital cataracts in 4 adult siblings. Gene. 2014;534:218–21. https://doi.org/10.1016/j.gene.2013.10.057 . - PubMed
  28. Patel N, Anand D, Monies D, Maddirevula S, Khan A, Algoufi T, et al. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet. 2017;136:205–25. https://doi.org/10.1007/s00439-016-1747-6 . - PubMed
  29. Polyakov A, Shagina I, Khlebnikova O, Evgrafov O. Mutation in the connexin 50 gene (GJA8) in a Russian family with zonular pulverulent cataract. Clin Genet. 2001;60:476–8. https://doi.org/10.1034/j.1399-0004.2001.600614.x . - PubMed
  30. Aznabaev MT, Khidiyatova II, Khidiyatova IM, Avkhadeeva SR, Dzhemileva LU, Khusnutdinova EK. [Mutatsii v gene CRYAA - odna iz prichin razvitiya nasledstvennoy vrozhdennoy katarakty]. Meditsinskiy Vestn Bashkortostana. 2014;9:7–9. - PubMed
  31. Khidiyatova II, Aznabaev MT, Khidiyatova IM, Avkhadeeva SR, Dzhemileva LU, Zinchenko RA, et al. [Analiz gena Konneksina 50 (GJA8) u bol’nykh s nasledstvennoy vrozhdonnoy kataraktoy iz respubliki Bashkortostan]. Meditsinskaya genetika 2014;13:37–42. - PubMed
  32. Khidiyatova II, Aznabaev MT, Khidiyatova IM, Avkhadeeva SR, Dzhemileva LU, Khusnutdinova EK. [Analiz gena konneksina 46 (GJA3) u bol’nykh nasledstvennoy vrozhdennoy kataraktoy respubliki Bashkortostan]. Meditsinskiy Vestn Bashkortostana. 2016;11:16–20. - PubMed
  33. Tarskaia L, Zinchenko R, Elchinova G, Egorova A, Korotov M, Basova E, et al. The structure and diversity of hereditary pathology in Sakha Republic (Yakutia). Russ J Genet. 2004;40:1264–72. https://doi.org/10.1023/B:RUGE.0000048669.22362.1c . - PubMed
  34. Fedorova S, Reidla M, Metspalu E, Metspalu M, Rootsi S, Tambets K et al. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC Evol Biol. 2013;13. https://doi.org/10.1186/1471-2148-13-127 . - PubMed
  35. Galeeva N, Voevoda M, Spiridonova M, Stepanov V, Polyakov A. Population frequency and age of c.806C>T mutation in CYB5R3 gene as cause of recessive congenital methemoglobinemia in Yakutia. Russ J Genet. 2013;49:457–63. https://doi.org/10.1134/S102279541303006X . - PubMed
  36. Puzyrev V, Maximova N. Hereditary diseases among Yakuts. Russ J Genet. 2008;44:1141–7. https://doi.org/10.1134/S1022795408100037 . - PubMed
  37. Maksimova N, Hara K, Nikolaeva I, Chun-Feng T, Usui T, Takagi M, et al. Neuroblastoma amplified sequence gene is associated with a novel short stature syndrome characterised by optic nerve atrophy and Pelger-Huet anomaly. J Med Genet. 2010;47:538–48. https://doi.org/10.1136/jmg.2009.074815 . - PubMed
  38. Maksimova N, Hara K, Miyashia A, Nikolaeva I, Shiga A, Nogovicina A, et al. Clinical, molecular and histopathological features of short stature syndrome with novel CUL7 mutation in Yakuts: new population isolate in Asia. J Med Genet. 2007;44:772–8. https://doi.org/10.1136/jmg.2007.051979 . - PubMed
  39. Barashkov NA, Dzhemileva LU, Fedorova SA, Teryutin FM, Posukh OL, Fedotova EE, et al. Autosomal recessive deafness 1A (DFNB1A) in Yakut population isolate in Eastern Siberia: extensive accumulation of the splice site mutation IVS1+1G>A in GJB2 gene as a result of founder effect. J Hum Genet. 2011;56:631–9. https://doi.org/10.1038/jhg.2011.72 . - PubMed
  40. Risch N, de Leon D, Ozelius L, Kramer P, Almasy L, Singer B, et al. Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nat Genet. 1995;9:152–9. https://doi.org/10.1038/ng0295-152 . - PubMed
  41. Bengtsson B, Thomson G. Measuring the strength of associations between HLA antigens and diseases. Tissue Antigens. 1981;18:356–63. https://doi.org/10.1111/j.1399-0039.1981.tb01404.x . - PubMed
  42. Khan AO, Aldahmesh MA, Alkuraya FS. Phenotypes of recessive pediatric cataract in a cohort of children with identified homozygous gene mutations (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc. 2015;113:T7. - PubMed
  43. Chen J, Wang Q, Cabrera P, Zhong Z, Sun W, Jiao X, et al. Molecular genetic analysis of Pakistani families with autosomal recessive congenital cataracts by homozygosity screening. Investig Ophthalmol Vis Sci. 2017;58:2207–17. https://doi.org/10.1167/iovs.17-21469 . - PubMed
  44. Li J, Leng Y, Han S, Yan L, Lu C, Luo Y, et al. Clinical and genetic characteristics of Chinese patients with familial or sporadic pediatric cataract. Orphanet J Rare Dis. 2018;13. https://doi.org/10.1186/s13023-018-0828-0 . - PubMed
  45. Iqbal H, Khan SY, Zhou L, Irum B, Ali M, Ahmed MR, et al. Mutations in FYCO1 identified in families with congenital cataracts. Mol Vis. 2020;26:334–44. - PubMed
  46. Gillespie RL, O’Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology. 2014;121:2124–37. https://doi.org/10.1016/j.ophtha.2014.06.006 . - PubMed
  47. Gogolev AI [Etnicheskaya istoriya narodov Yakutii (do nachala XX veka)]. 103. Yakutsk: Izd-vo YAGU; 2004 - PubMed
  48. Marusin A, Kurtanov H, Maksimova N, Swarovsakaja M, Stepanov V. Haplotype analysis of oculopharyngeal muscular dystrophy (OPMD) locus in Yakutia. Russ J Genet. 2016;52:331–8. https://doi.org/10.1134/S1022795416030091 . - PubMed
  49. Swarovskaya M, Stepanova S, Marussin A, Sukhomyasova A, Maximova N, Stepanov V. Genetic variability and structure of SNP haplotypes in the DMPK gene in Yakuts and other ethnic groups of northern Eurasia in relation to myotonic dystrophy. Russ J Genet. 2015;51:619–26. https://doi.org/10.1134/S1022795415060150 . - PubMed
  50. Osakovskiy VL, Goldfarb LG, Platonov FA. [K voprosu proiskhozhdeniya SCA1 mutatsii v yakutskoy populyatsii]. Bulletin’ SO RAMN. 2004;1:103–4. - PubMed

Publication Types