Display options
Share it on

Front Aging Neurosci. 2021 Mar 09;13:629214. doi: 10.3389/fnagi.2021.629214. eCollection 2021.

Persistent Dark Cones in Oligocone Trichromacy Revealed by Multimodal Adaptive Optics Ophthalmoscopy.

Frontiers in aging neuroscience

Joanne Li, Tao Liu, Oliver J Flynn, Amy Turriff, Zhuolin Liu, Ehsan Ullah, Jianfei Liu, Alfredo Dubra, Mary A Johnson, Brian P Brooks, Robert B Hufnagel, Daniel X Hammer, Laryssa A Huryn, Brett G Jeffrey, Johnny Tam

Affiliations

  1. National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
  2. Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States.
  3. Department of Ophthalmology, Stanford University, Palo Alto, CA, Unites States.
  4. Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, United States.

PMID: 33767618 PMCID: PMC7985087 DOI: 10.3389/fnagi.2021.629214

Abstract

Dark cone photoreceptors, defined as those with diminished or absent reflectivity when observed with adaptive optics (AO) ophthalmoscopy, are increasingly reported in retinal disorders. However, their structural and functional impact remain unclear. Here, we report a 3-year longitudinal study on a patient with oligocone trichromacy (OT) who presented with persistent, widespread dark cones within and near the macula. Diminished electroretinogram (ERG) cone but normal ERG rod responses together with normal color vision confirmed the OT diagnosis. In addition, the patient had normal to near normal visual acuity and retinal sensitivity. Occasional dark gaps in the photoreceptor layer were observed on optical coherence tomography, in agreement with reflectance AO scanning light ophthalmoscopy, which revealed that over 50% of the cones in the fovea were dark, increasing to 74% at 10° eccentricity. In addition, the cone density was 78% lower than normal histologic value at the fovea, and 20-40% lower at eccentricities of 5-15°. Interestingly, color vision testing was near normal at locations where cones were predominantly dark. These findings illustrate how a retina with predominant dark cones that persist over at least 3 years can support near normal central retinal function. Furthermore, this study adds to the growing evidence that cones can continue to survive under non-ideal conditions.

Copyright © 2021 Li, Liu, Flynn, Turriff, Liu, Ullah, Liu, Dubra, Johnson, Brooks, Hufnagel, Hammer, Huryn, Jeffrey and Tam.

Keywords: adaptive optics; color vision; dark cones; oligocone trichromacy; optical coherence tomography; pde6h; scanning laser ophthalmoscopy; visual function

Conflict of interest statement

ZL has a patent on adaptive optics-optical coherence tomography technology and stand to benefit financially from any commercialization of the technology. The remaining authors declare that the researc

References

  1. J Vis. 2002;2(5):404-12 - PubMed
  2. Doc Ophthalmol. 2009 Feb;118(1):69-77 - PubMed
  3. Vision Res. 1998 Nov;38(21):3413-9 - PubMed
  4. Nat Neurosci. 2009 Aug;12(8):967-9 - PubMed
  5. Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4431-8 - PubMed
  6. Invest Ophthalmol Vis Sci. 2003 Oct;44(10):4580-92 - PubMed
  7. Invest Ophthalmol Vis Sci. 2011 Sep 21;52(10):7376-84 - PubMed
  8. Vis Neurosci. 2004 May-Jun;21(3):431-6 - PubMed
  9. Mol Ther. 2018 Sep 5;26(9):2282-2294 - PubMed
  10. Biomed Opt Express. 2017 Oct 19;8(11):5098-5112 - PubMed
  11. Am J Ophthalmol. 2012 Dec;154(6):987-1001.e1 - PubMed
  12. J Comp Neurol. 1990 Feb 22;292(4):497-523 - PubMed
  13. Biomed Opt Express. 2011 Jun 1;2(6):1757-68 - PubMed
  14. Invest Ophthalmol Vis Sci. 2020 Mar 9;61(3):40 - PubMed
  15. PLoS One. 2019 Jul 25;14(7):e0211397 - PubMed
  16. Invest Ophthalmol Vis Sci. 2014 Sep 09;55(10):6301-8 - PubMed
  17. Hum Mutat. 2020 Jan;41(1):255-264 - PubMed
  18. Invest Ophthalmol Vis Sci. 2013 Aug 28;54(8):5836-47 - PubMed
  19. Invest Ophthalmol Vis Sci. 2018 Sep 4;59(11):4639-4652 - PubMed
  20. Am J Ophthalmol Case Rep. 2017 Sep;7:14-19 - PubMed
  21. Am J Hum Genet. 2012 Sep 7;91(3):527-32 - PubMed
  22. Genes (Basel). 2016 Jul 27;7(8): - PubMed
  23. Ocul Immunol Inflamm. 2020 Jan 4;:1-6 - PubMed
  24. Invest Ophthalmol Vis Sci. 2017 Sep 1;58(11):4477-4489 - PubMed
  25. Ophthalmic Physiol Opt. 2020 Mar;40(2):88-116 - PubMed
  26. Invest Ophthalmol Vis Sci. 2014 Jun 06;55(7):4244-51 - PubMed
  27. Invest Ophthalmol Vis Sci. 2011 Jul 01;52(7):4757-64 - PubMed
  28. Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):1234-1243 - PubMed
  29. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT533-43 - PubMed
  30. Biomed Opt Express. 2018 Aug 14;9(9):4246-4262 - PubMed
  31. J Clin Invest. 2018 Dec 3;128(12):5663-5675 - PubMed

Publication Types