Display options
Share it on

Sci Rep. 2021 Mar 08;11(1):5434. doi: 10.1038/s41598-021-84879-2.

Cannabidiol induces autophagy via ERK1/2 activation in neural cells.

Scientific reports

Talita A M Vrechi, Anderson H F F Leão, Ingrid B M Morais, Vanessa C Abílio, Antonio W Zuardi, Jaime Eduardo C Hallak, José Alexandre Crippa, Claudia Bincoletto, Rodrigo P Ureshino, Soraya S Smaili, Gustavo J S Pereira

Affiliations

  1. Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
  2. National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.
  3. Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, USP, Ribeirão Preto, Brazil.
  4. Department of Biological Sciences, Diadema Campus, Universidade Federal de São Paulo, Diadema, SP, Brazil.
  5. Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
  6. Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil. [email protected].

PMID: 33686185 PMCID: PMC7940388 DOI: 10.1038/s41598-021-84879-2

Abstract

Autophagy is a lysosomal catabolic process essential to cell homeostasis and is related to the neuroprotection of the central nervous system. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid present in Cannabis sativa. Many therapeutic actions have been linked to this compound, including autophagy activation. However, the precise underlying molecular mechanisms remain unclear, and the downstream functional significance of these actions has yet to be determined. Here, we investigated CBD-evoked effects on autophagy in human neuroblastoma SH-SY5Y and murine astrocyte cell lines. We found that CBD-induced autophagy was substantially reduced in the presence of CB1, CB2 and TRPV1 receptor antagonists, AM 251, AM 630 and capsazepine, respectively. This result strongly indicates that the activation of these receptors mediates the autophagic flux. Additionally, we demonstrated that CBD activates autophagy through ERK1/2 activation and AKT suppression. Interestingly, CBD-mediated autophagy activation is dependent on the autophagy initiator ULK1, but mTORC1 independent. Thus, it is plausible that a non-canonical pathway is involved. Our findings collectively provide evidence that CBD stimulates autophagy signal transduction via crosstalk between the ERK1/2 and AKT kinases, which represent putative regulators of cell proliferation and survival. Furthermore, our study sheds light on potential therapeutic cannabinoid targets that could be developed for treating neurodegenerative disorders.

References

  1. J Biol Chem. 2009 Aug 7;284(32):21412-24 - PubMed
  2. Neuropharmacology. 2012 Oct;63(5):905-15 - PubMed
  3. J Neurosci. 2001 Oct 15;21(20):RC174 - PubMed
  4. Nat Rev Drug Discov. 2008 May;7(5):438-55 - PubMed
  5. Br J Pharmacol. 2003 Oct;140(3):439-40 - PubMed
  6. Exp Neurol. 2010 Jul;224(1):37-47 - PubMed
  7. Biochem J. 2000 Apr 15;347(Pt 2):369-73 - PubMed
  8. Cell Death Differ. 2011 Jul;18(7):1099-111 - PubMed
  9. Nature. 2007 Jun 28;447(7148):1121-5 - PubMed
  10. Mol Neurobiol. 2007 Aug;36(1):82-91 - PubMed
  11. Neuropharmacology. 1987 May;26(5):507-12 - PubMed
  12. J Biol Chem. 2009 Oct 23;284(43):29413-26 - PubMed
  13. Am J Physiol Gastrointest Liver Physiol. 2014 Jul 15;307(2):G140-8 - PubMed
  14. Oncogene. 2007 May 14;26(22):3227-39 - PubMed
  15. Pflugers Arch. 2005 Oct;451(1):143-50 - PubMed
  16. Front Pharmacol. 2016 Nov 08;7:422 - PubMed
  17. Trends Pharmacol Sci. 2014 Nov;35(11):583-91 - PubMed
  18. Dev Cell. 2014 Dec 22;31(6):734-46 - PubMed
  19. Histol Histopathol. 2002;17(3):897-908 - PubMed
  20. Pharmacol Ther. 2017 Jul;175:133-150 - PubMed
  21. Tumour Biol. 2015 Feb;36(2):1173-7 - PubMed
  22. Epilepsy Behav. 2017 Aug;73:111-118 - PubMed
  23. Bioorg Med Chem. 2015 Sep 1;23(17):5483-8 - PubMed
  24. Nat Commun. 2017 Jun 13;8:15793 - PubMed
  25. Free Radic Biol Med. 2014 Mar;68:260-7 - PubMed
  26. J Neurosci Res. 2018 Jan;96(1):160-171 - PubMed
  27. J Cell Biol. 2007 Nov 5;179(3):485-500 - PubMed
  28. Int J Mol Sci. 2014 Jun 05;15(6):10034-51 - PubMed
  29. Cell Signal. 2005 Jan;17(1):25-37 - PubMed
  30. Neurobiol Dis. 2013 Nov;59:141-50 - PubMed
  31. J Neurosci. 2002 Nov 15;22(22):9742-53 - PubMed
  32. Neurochem Res. 2005 Aug;30(8):1037-43 - PubMed
  33. Nat Cell Biol. 2010 Aug;12(8):747-57 - PubMed
  34. PLoS One. 2014 Dec 17;9(12):e113161 - PubMed
  35. Genes Dev. 2007 Nov 15;21(22):2861-73 - PubMed
  36. Neurotox Res. 2014 Nov;26(4):307-16 - PubMed
  37. Prostaglandins Other Lipid Mediat. 2016 Jan;122:54-63 - PubMed
  38. J Neurochem. 2014 Nov;131(4):484-97 - PubMed
  39. Br J Anaesth. 2005 May;94(5):649-56 - PubMed
  40. Autophagy. 2008 Feb;4(2):151-75 - PubMed
  41. Cell Mol Life Sci. 2015 Dec;72(24):4721-57 - PubMed
  42. Autophagy. 2016;12(1):1-222 - PubMed
  43. Oncogene. 2019 Mar;38(13):2223-2240 - PubMed
  44. Fitoterapia. 2020 Jun;143:104553 - PubMed
  45. Neuropharmacology. 2016 Apr;103:16-26 - PubMed
  46. Nature. 1997 Oct 23;389(6653):816-24 - PubMed
  47. J Pharmacol Exp Ther. 2004 Mar;308(3):838-45 - PubMed
  48. Cell Death Dis. 2011 Apr 28;2:e152 - PubMed
  49. Neurobiol Dis. 2005 Jun-Jul;19(1-2):96-107 - PubMed
  50. Brain Res Dev Brain Res. 2000 Jul 30;122(1):97-109 - PubMed
  51. Development. 2016 Sep 1;143(17):3050-60 - PubMed
  52. J Neurosci. 2005 Feb 23;25(8):1904-13 - PubMed
  53. Oncotarget. 2017 Feb 21;8(8):12730-12740 - PubMed
  54. FEBS Lett. 1995 Feb 13;359(2-3):133-6 - PubMed
  55. J Neurochem. 1997 Apr;68(4):1679-85 - PubMed
  56. Behav Neurosci. 2015 Jun;129(3):368-70 - PubMed
  57. J Clin Invest. 2009 May;119(5):1359-72 - PubMed
  58. Nature. 2003 Dec 4;426(6966):517-24 - PubMed
  59. J Psychopharmacol. 2011 Jan;25(1):121-30 - PubMed
  60. Br J Pharmacol. 2004 Sep;143(2):247-50 - PubMed
  61. Handb Exp Pharmacol. 2005;(168):327-65 - PubMed
  62. Handb Exp Pharmacol. 2005;(168):299-325 - PubMed
  63. J Leukoc Biol. 2003 Oct;74(4):486-96 - PubMed
  64. Neuropharmacology. 2002 Sep;43(4):503-10 - PubMed
  65. Mol Cancer Ther. 2011 Jul;10(7):1161-72 - PubMed
  66. Nat Rev Drug Discov. 2007 Apr;6(4):304-12 - PubMed
  67. J Biol Chem. 2003 Dec 5;278(49):48973-80 - PubMed
  68. Cell Death Dis. 2011 Jun 09;2:e170 - PubMed
  69. Bioorg Med Chem Lett. 1998 Oct 20;8(20):2839-44 - PubMed
  70. Int J Cancer. 2015 Oct 15;137(8):1855-69 - PubMed
  71. J Alzheimers Dis. 2013;35(3):525-39 - PubMed
  72. Cold Spring Harb Protoc. 2016 Jul 01;2016(7): - PubMed
  73. Genes Cells. 2008 Sep;13(9):941-7 - PubMed
  74. Vitam Horm. 2009;81:389-419 - PubMed
  75. Chem Biol Interact. 2014 Mar 5;210:96-102 - PubMed
  76. Naunyn Schmiedebergs Arch Pharmacol. 2006 Feb;372(5):354-61 - PubMed
  77. Mol Biol Cell. 2009 Apr;20(7):1981-91 - PubMed
  78. Nature. 1995 Aug 17;376(6541):590-4 - PubMed
  79. Br J Pharmacol. 2007 Dec;152(7):984-6 - PubMed
  80. PLoS One. 2011;6(12):e28668 - PubMed
  81. Nat Rev Neurosci. 2015 Jun;16(6):345-57 - PubMed

Publication Types