Display options
Share it on

Exp Physiol. 2021 May;106(5):1181-1195. doi: 10.1113/EP089365. Epub 2021 Apr 01.

Heartbeats entrain breathing via baroreceptor-mediated modulation of expiratory activity.

Experimental physiology

William H Barnett, David M Baekey, Julian F R Paton, Thomas E Dick, Erica A Wehrwein, Yaroslav I Molkov

Affiliations

  1. Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA.
  2. Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
  3. Department of Physiology, Faculty of Medical and Health Sciences, Manaaki M?nawa - The Centre for Heart Research, University of Auckland, Auckland, New Zealand.
  4. Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA.
  5. Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
  6. Department of Physiology, Michigan State University, East Lansing, MI, USA.
  7. Neuroscience Institute, Georgia State University, Atlanta, GA, USA.

PMID: 33749038 PMCID: PMC8209486 DOI: 10.1113/EP089365

Abstract

NEW FINDINGS:   Cardio-ventilatory coupling refers to the onset of inspiration occurring at a preferential latency following the last heartbeat (HB) in expiration. According to the cardiac-trigger hypothesis, the pulse pressure initiates an inspiration via baroreceptor activation. However, the central neural substrate mediating this coupling remains undefined. Using a combination of animal data, human data and mathematical modelling, this study tests the hypothesis that the HB, by way of pulsatile baroreflex activation, controls the initiation of inspiration that occurs through a rapid neural activation loop from the carotid baroreceptors to Bötzinger complex expiratory neurons.

ABSTRACT: Cardio-ventilatory coupling refers to a heartbeat (HB) occurring at a preferred latency prior to the next breath. We hypothesized that the pressure pulse generated by a HB activates baroreceptors that modulate brainstem expiratory neuronal activity and delay the initiation of inspiration. In supine male subjects, we recorded ventilation, electrocardiogram and blood pressure during 20-min epochs of baseline, slow-deep breathing and recovery. In in situ rodent preparations, we recorded brainstem activity in response to pulses of perfusion pressure. We applied a well-established respiratory network model to interpret these data. In humans, the latency between a HB and onset of inspiration was consistent across different breathing patterns. In in situ preparations, a transient pressure pulse during expiration activated a subpopulation of expiratory neurons normally active during post-inspiration, thus delaying the next inspiration. In the model, baroreceptor input to post-inspiratory neurons accounted for the effect. These studies are consistent with baroreflex activation modulating respiration through a pauci-synaptic circuit from baroreceptors to onset of inspiration.

© 2021 The Authors. Experimental Physiology © 2021 The Physiological Society.

Keywords: CVC; arterial baroreflex; baroreceptors; coupling; mathematical modeling; respiration

References

  1. J Neurosci. 2008 Feb 13;28(7):1773-85 - PubMed
  2. Front Physiol. 2011 Nov 29;2:86 - PubMed
  3. Prog Brain Res. 2014;209:191-205 - PubMed
  4. Br J Anaesth. 1998 Feb;80(2):164-8 - PubMed
  5. J Appl Physiol. 1974 Jan;36(1):12-9 - PubMed
  6. J Physiol. 2016 Dec 15;594(24):7249-7265 - PubMed
  7. Science. 1991 Nov 1;254(5032):726-9 - PubMed
  8. J Comput Neurosci. 2011 Jun;30(3):607-32 - PubMed
  9. PLoS One. 2014 Oct 10;9(10):e109894 - PubMed
  10. J Physiol. 1998 Nov 1;512 ( Pt 3):863-82 - PubMed
  11. PLoS Comput Biol. 2018 Apr 26;14(4):e1006148 - PubMed
  12. J Neurophysiol. 2009 Apr;101(4):2146-65 - PubMed
  13. Wiley Interdiscip Rev Syst Biol Med. 2012 Mar-Apr;4(2):163-70 - PubMed
  14. J Appl Physiol (1985). 2020 Nov 1;129(5):1193-1202 - PubMed
  15. J Physiol. 2004 May 1;556(Pt 3):959-70 - PubMed
  16. J Physiol. 2012 Apr 15;590(8):1989-2008 - PubMed
  17. J Appl Physiol. 1975 Sep;39(3):395-404 - PubMed
  18. Exp Physiol. 2008 Jul;93(7):803-16 - PubMed
  19. Respir Physiol Neurobiol. 2014 Dec 1;204:99-111 - PubMed
  20. Br J Anaesth. 1999 Oct;83(4):552-63 - PubMed
  21. Exp Physiol. 2003 Nov;88(6):775-82 - PubMed
  22. J Appl Physiol (1985). 2012 Apr;112(8):1248-57 - PubMed
  23. Respir Physiol Neurobiol. 2010 Nov 30;174(1-2):135-45 - PubMed
  24. Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1967-77 - PubMed
  25. J Neurophysiol. 2007 Dec;98(6):3370-87 - PubMed
  26. Br J Anaesth. 1997 Jul;79(1):35-40 - PubMed
  27. J Physiol. 2007 Mar 1;579(Pt 2):473-86 - PubMed
  28. Brain Res. 1975 Mar 14;86(1):168-71 - PubMed
  29. Front Neural Circuits. 2013 Feb 13;7:16 - PubMed
  30. J Appl Physiol (1985). 2005 Aug;99(2):691-8 - PubMed

Publication Types

Grant support