Display options
Share it on

Physiol Rep. 2021 Mar;9(6):e14785. doi: 10.14814/phy2.14785.

Maternal selenium deficiency in mice promotes sex-specific changes to urine flow and renal expression of mitochondrial proteins in adult offspring.

Physiological reports

Elliott S Neal, Pierre Hofstee, Montana R Askew, Nykola L Kent, Lucy A Bartho, Anthony V Perkins, James S M Cuffe

Affiliations

  1. School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
  2. School of Medical Science, Griffith University Gold Coast Campus, Southport, QLD, Australia.

PMID: 33769708 PMCID: PMC7995548 DOI: 10.14814/phy2.14785

Abstract

Selenium deficiency during pregnancy can impair fetal development and predispose offspring to thyroid dysfunction. Given that key selenoproteins are highly expressed in the kidney and that poor thyroid health can lead to kidney disease, it is likely that kidney function may be impaired in offspring of selenium-deficient mothers. This study utilized a mouse model of maternal selenium deficiency to investigate kidney protein glycation, mitochondrial adaptations, and urinary excretion in offspring. Female C57BL/6 mice were fed control (>190 µg selenium/kg) or low selenium (<50 µg selenium/kg) diets four weeks prior to mating, throughout gestation, and lactation. At postnatal day (PN) 170, offspring were placed in metabolic cages for 24 hr prior to tissue collection at PN180. Maternal selenium deficiency did not impact selenoprotein antioxidant activity, but increased advanced glycation end products in female kidneys. Male offspring had reduced renal Complex II and Complex IV protein levels and lower 24 hr urine flow. Although renal aquaporin 2 (Aqp2) and arginine vasopressin receptor 2 (Avpr2) mRNA were not altered by maternal selenium deficiency, a correlation between urine flow and plasma free T

© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Keywords: DOHaD; fetal programing; maternal diet; offspring kidney; selenium

References

  1. Front Endocrinol (Lausanne). 2018 Jul 19;9:394 - PubMed
  2. J Am Soc Nephrol. 2012 Jan;23(1):22-6 - PubMed
  3. Nutrients. 2020 Jan 20;12(1): - PubMed
  4. Am J Physiol. 1988 Feb;254(2 Pt 1):C323-9 - PubMed
  5. Clin Exp Pharmacol Physiol. 2018 Aug;45(8):871-884 - PubMed
  6. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11704-8 - PubMed
  7. J Cell Sci. 2006 Jun 15;119(Pt 12):2468-76 - PubMed
  8. J Dev Orig Health Dis. 2016 Oct;7(5):449-472 - PubMed
  9. Eur J Clin Invest. 2010 Aug;40(8):742-55 - PubMed
  10. J Endocrinol. 2021 Jan;248(1):45-57 - PubMed
  11. Antioxid Redox Signal. 2007 Jul;9(7):775-806 - PubMed
  12. Int J Mol Sci. 2020 Mar 23;21(6): - PubMed
  13. J Endocrinol. 2014 Jun;221(3):R87-R103 - PubMed
  14. FASEB J. 2018 Jun;32(6):3254-3263 - PubMed
  15. Mol Cell Biochem. 1995 Oct 4;151(1):61-7 - PubMed
  16. Am J Physiol Regul Integr Comp Physiol. 2011 Aug;301(2):R500-9 - PubMed
  17. Am J Physiol Renal Physiol. 2001 Apr;280(4):F715-26 - PubMed
  18. J Physiol. 2019 Dec;597(23):5597-5617 - PubMed
  19. Cell Physiol Biochem. 2018;47(6):2471-2483 - PubMed
  20. J Intern Med. 2007 May;261(5):412-7 - PubMed
  21. FASEB J. 2003 Sep;17(12):1762-4 - PubMed
  22. Trends Biochem Sci. 2014 Mar;39(3):112-20 - PubMed
  23. Endocrinology. 2015 Aug;156(8):3038-46 - PubMed
  24. Biol Trace Elem Res. 2008 Dec;126 Suppl 1:S1-10 - PubMed
  25. Am J Physiol Renal Physiol. 2015 May 15;308(10):F1065-73 - PubMed
  26. Curr Opin Endocrinol Diabetes Obes. 2016 Oct;23(5):407-15 - PubMed
  27. Am J Physiol Renal Physiol. 2005 Oct;289(4):F645-59 - PubMed
  28. Bioessays. 2003 Mar;25(3):212-20 - PubMed
  29. Miner Electrolyte Metab. 1999 Jan-Apr;25(1-2):56-64 - PubMed
  30. Kidney Int. 1976 Jul;10(1):38-45 - PubMed
  31. Reproduction. 2014 Jun;147(6):R189-98 - PubMed
  32. Physiol Rep. 2019 Nov;7(21):e14273 - PubMed
  33. Redox Biol. 2014 Jan 09;2:411-29 - PubMed

Publication Types