Display options
Share it on

Netw Neurosci. 2021 Feb 01;5(1):145-165. doi: 10.1162/netn_a_00172. eCollection 2021.

Differential contributions of static and time-varying functional connectivity to human behavior.

Network neuroscience (Cambridge, Mass.)

Adam Eichenbaum, Ioannis Pappas, Daniel Lurie, Jessica R Cohen, Mark D'Esposito

Affiliations

  1. Helen Wills Neuroscience Institute, University of California, Berkeley.
  2. Department of Psychology, University of California, Berkeley.
  3. Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill.

PMID: 33688610 PMCID: PMC7935045 DOI: 10.1162/netn_a_00172

Abstract

Measures of human brain functional connectivity acquired during the resting-state track critical aspects of behavior. Recently, fluctuations in resting-state functional connectivity patterns-typically averaged across in traditional analyses-have been considered for their potential neuroscientific relevance. There exists a lack of research on the differences between traditional "static" measures of functional connectivity and newly considered "time-varying" measures as they relate to human behavior. Using functional magnetic resonance imagining (fMRI) data collected at rest, and a battery of behavioral measures collected outside the scanner, we determined the degree to which each modality captures aspects of personality and cognitive ability. Measures of time-varying functional connectivity were derived by fitting a hidden Markov model. To determine behavioral relationships, static and time-varying connectivity measures were submitted separately to canonical correlation analysis. A single relationship between static functional connectivity and behavior existed, defined by measures of personality and stable behavioral features. However, two relationships were found when using time-varying measures. The first relationship was similar to the static case. The second relationship was unique, defined by measures reflecting trialwise behavioral variability. Our findings suggest that time-varying measures of functional connectivity are capable of capturing unique aspects of behavior to which static measures are insensitive.

© 2020 Massachusetts Institute of Technology.

Keywords: Canonical correlation analysis; Functional connectivity; Static functional connectivity; Time-varying functional connectivity

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

References

  1. Neuropsychologia. 2011 May;49(6):1589-96 - PubMed
  2. Front Neuroinform. 2011 Aug 22;5:13 - PubMed
  3. Neuroimage. 2010 Mar;50(1):81-98 - PubMed
  4. Psychol Rev. 1996 Jul;103(3):403-28 - PubMed
  5. Phys Rev Lett. 1994 Aug 15;73(7):951-954 - PubMed
  6. Neuroimage. 2018 Jun;173:540-550 - PubMed
  7. Neuroimage. 2019 Jul 1;194:42-54 - PubMed
  8. Netw Neurosci. 2018 Oct 01;2(4):397-417 - PubMed
  9. Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12827-12832 - PubMed
  10. Nat Commun. 2019 Mar 4;10(1):1035 - PubMed
  11. J Neurosci. 2016 Nov 30;36(48):12083-12094 - PubMed
  12. Neuroimage. 2017 Jul 1;154:174-187 - PubMed
  13. Neuroimage. 2018 Aug 15;177:1-10 - PubMed
  14. PLoS Comput Biol. 2017 Feb 23;13(2):e1005350 - PubMed
  15. Nat Neurosci. 2015 Nov;18(11):1565-7 - PubMed
  16. Neuron. 2014 Oct 22;84(2):262-74 - PubMed
  17. Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6040-5 - PubMed
  18. Neuroimage. 2018 Oct 15;180(Pt B):448-462 - PubMed
  19. Neuroimage. 2010 Oct 15;53(1):303-17 - PubMed
  20. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 - PubMed
  21. J Neurosci. 2015 Nov 18;35(46):15254-62 - PubMed
  22. Neuroimage. 2002 Jan;15(1):273-89 - PubMed
  23. Nat Methods. 2019 Jan;16(1):111-116 - PubMed
  24. Nat Neurosci. 2016 Jan;19(1):165-71 - PubMed
  25. Netw Neurosci. 2020 Feb 01;4(1):30-69 - PubMed
  26. Neuroimage. 2014 Nov 1;101:531-46 - PubMed
  27. Neuroimage. 2014 May 1;91:282-99 - PubMed
  28. Neuroimage. 2013 Oct 15;80:62-79 - PubMed
  29. Neuroimage Clin. 2012 Nov 16;2:79-94 - PubMed
  30. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 - PubMed
  31. Trends Neurosci. 2018 May;41(5):244-247 - PubMed
  32. Neuroimage. 1999 Feb;9(2):179-94 - PubMed
  33. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 - PubMed
  34. Front Syst Neurosci. 2010 Oct 08;4:147 - PubMed
  35. Cereb Cortex. 2018 Sep 1;28(9):3095-3114 - PubMed
  36. Neuroimage. 2018 May 1;171:415-436 - PubMed
  37. Neuroimage. 2016 Feb 15;127:242-256 - PubMed
  38. Neuroimage. 2006 Nov 15;33(3):969-79 - PubMed
  39. Nat Commun. 2019 May 24;10(1):2317 - PubMed
  40. Magn Reson Med. 1995 Oct;34(4):537-41 - PubMed
  41. Neuroimage. 2014 Jan 1;84:320-41 - PubMed
  42. Nature. 2008 May 8;453(7192):233-5 - PubMed
  43. Psychol Med. 1988 Nov;18(4):1007-19 - PubMed
  44. Neuron. 2016 Oct 19;92(2):544-554 - PubMed
  45. IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 - PubMed
  46. Neuroimage. 2002 Oct;17(2):825-41 - PubMed
  47. PLoS One. 2012;7(1):e30468 - PubMed
  48. Neuroimage. 2009 Oct 15;48(1):63-72 - PubMed
  49. J Clin Psychol. 1995 Nov;51(6):768-74 - PubMed
  50. Neuroimage. 2018 Oct 15;180(Pt B):515-525 - PubMed
  51. Schizophr Res. 2006 Apr;83(2-3):155-71 - PubMed
  52. Med Image Anal. 2008 Feb;12(1):26-41 - PubMed
  53. J Neurosci. 2016 Aug 17;36(33):8551-61 - PubMed
  54. Brain Connect. 2014 Nov;4(9):741-59 - PubMed
  55. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8463-8 - PubMed
  56. Neuron. 2014 Jul 2;83(1):238-51 - PubMed
  57. PLoS Comput Biol. 2018 Aug 28;14(8):e1006420 - PubMed
  58. Neuroimage. 2018 Oct 15;180(Pt B):646-656 - PubMed
  59. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4997-5006 - PubMed
  60. J Neurosci. 2013 Aug 28;33(35):14031-9 - PubMed
  61. Neuroimage. 2013 Oct 15;80:360-78 - PubMed

Publication Types