Display options
Share it on

J Exp Orthop. 2021 Mar 31;8(1):24. doi: 10.1186/s40634-021-00345-y.

The future of meniscus science: international expert consensus.

Journal of experimental orthopaedics

Nicholas N DePhillipo, Robert F LaPrade, Stefano Zaffagnini, Caroline Mouton, Romain Seil, Philippe Beaufils

Affiliations

  1. Oslo Sports Trauma Research Center, 4014 Ulleval Stadion, 0806, Oslo, Norway. [email protected].
  2. Twin Cities Orthopedics, Edina, MN, USA.
  3. Rizzoli Orthopedic Institutes of Bologna, Bologna, Italy.
  4. Department of Orthopaedic Surgery, Centre Hospitalier de Luxembourg, Clinique d'Eich, Luxembourg city, Luxembourg.
  5. Sports Medicine and Science, Luxembourg Institute of Research in Orthopaedics, Luxembourg city, Luxembourg.
  6. Human Motion, Orthopaedics, Sports Medicine and Digital Methods, Luxembourg Institute of Health, Luxembourg city, Luxembourg.
  7. Centre Hospitalier de Versailles, Versailles, France.

PMID: 33791890 PMCID: PMC8012449 DOI: 10.1186/s40634-021-00345-y

Abstract

PURPOSE: The purpose of this study was to evaluate the main focus areas for research and development for furthering the state of meniscus science in 2021.

METHODS: An electronic survey including 10 questions was sent in a blind fashion to the faculty members of the 5

RESULTS: Of the 82 faculty, 76 (93%) from 18 different countries completed the survey (84% male, 16% female). The highest ranked future research and development focus areas were meniscus repair, biologics, osteotomy procedures, addressing meniscus extrusion, and the development of new therapies for the prevention of posttraumatic osteoarthritis. Currently, the most 'valuable' type of biologic reported for meniscus treatment was platelet-rich plasma. The main reported global research limitation was a lack of long-term clinical outcomes data. The most promising emerging medical technologies for improving meniscus science were 3-D printing, personalized medicine, and artificial implants.

CONCLUSIONS: This survey suggests that the future of meniscus science should be focused on meniscal preservation techniques through meniscus repair, addressing meniscal extrusion, and the use of orthobiologics. The lack of long-term clinical outcomes was the main reported research limitation globally for meniscus treatment. Future product development utilizing emerging medical technologies suggest the use of 3-D printing for meniscal transplants/scaffolds, personalized treatment, and bioengineering for artificial implants.

LEVEL OF EVIDENCE: Level V.

Keywords: Biomechanics; Knee osteotomy; Meniscal extrusion; Meniscus repair; Orthobiologics; Orthopedic medical devices; Posttraumatic osteoarthritis

References

  1. J Bone Joint Surg Br. 1948 Nov;30B(4):664-70 - PubMed
  2. Knee Surg Sports Traumatol Arthrosc. 2015 Jan;23(1):51-8 - PubMed
  3. Orthop J Sports Med. 2019 Feb 22;7(2):2325967119827267 - PubMed
  4. Orthop J Sports Med. 2018 Jun 15;6(6):2325967118779045 - PubMed
  5. Knee Surg Sports Traumatol Arthrosc. 2020 Apr;28(4):1177-1194 - PubMed
  6. Int J Mol Sci. 2020 Oct 06;21(19): - PubMed
  7. Orthopedics. 2019 Mar 1;42(2):66-73 - PubMed
  8. Am J Sports Med. 2019 Mar;47(3):762-769 - PubMed
  9. Arthroscopy. 2011 Mar;27(3):301-2 - PubMed
  10. Arthroscopy. 2020 May;36(5):1441-1442 - PubMed
  11. Drug Deliv. 2019 Dec;26(1):870-885 - PubMed
  12. Biomed Res Int. 2020 Jun 21;2020:6508781 - PubMed
  13. Expert Rev Med Devices. 2012 Mar;9(2):147-57 - PubMed
  14. Curr Opin Pharmacol. 2018 Jun;40:67-73 - PubMed
  15. Knee Surg Sports Traumatol Arthrosc. 2017 Feb;25(2):333-334 - PubMed
  16. Jt Dis Relat Surg. 2021;32(1):267-273 - PubMed
  17. J Orthop Surg (Hong Kong). 2019 May-Aug;27(2):2309499019849813 - PubMed
  18. Arthroscopy. 2015 May;31(5):944-55 - PubMed
  19. J Anat Physiol. 1884 Apr;18(Pt 3):i2-238 - PubMed
  20. Drug Discov Today. 2017 Jul;22(7):1064-1068 - PubMed
  21. Chem Soc Rev. 2018 Jul 30;47(15):5646-5683 - PubMed
  22. J Bone Joint Surg Am. 2017 May 17;99(10):809-819 - PubMed
  23. Arch Bone Jt Surg. 2020 Jan;8(1):1-4 - PubMed
  24. Expert Rev Med Devices. 2016 Sep;13(9):807-13 - PubMed
  25. Orthop Traumatol Surg Res. 2017 Dec;103(8S):S237-S244 - PubMed
  26. Polymers (Basel). 2020 Sep 18;12(9): - PubMed
  27. Orthop J Sports Med. 2016 Mar 31;4(3):2325967116636586 - PubMed
  28. Int J Sports Phys Ther. 2020 Apr;15(2):301-325 - PubMed
  29. Am J Sports Med. 2020 Oct;48(12):NP52-NP54 - PubMed
  30. Am J Sports Med. 1982 Mar-Apr;10(2):90-5 - PubMed
  31. Knee Surg Sports Traumatol Arthrosc. 2016 May;24(5):1421-3 - PubMed
  32. Knee Surg Sports Traumatol Arthrosc. 2017 Feb;25(2):459-467 - PubMed
  33. Knee Surg Sports Traumatol Arthrosc. 2019 Feb;27(2):341-342 - PubMed
  34. JAMA Oncol. 2018 Sep 1;4(9):1274-1280 - PubMed
  35. Am J Sports Med. 2016 Dec;44(12):3270-3283 - PubMed
  36. J Biomed Mater Res B Appl Biomater. 2013 Oct;101(7):1133-42 - PubMed
  37. PM R. 2020 Aug;12(8):805-816 - PubMed
  38. Biomed Res Int. 2018 Jan 17;2018:8472309 - PubMed
  39. Orthopade. 2000 Dec;29(12):1044-54 - PubMed
  40. Adv Funct Mater. 2019 Apr 11;29(15): - PubMed
  41. Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23(10):2780-8 - PubMed
  42. Orthop Clin North Am. 1979 Jul;10(3):629-42 - PubMed
  43. Orthop Traumatol Surg Res. 2019 Jun;105(4):677-682 - PubMed
  44. Int J Mol Sci. 2020 Feb 25;21(5): - PubMed
  45. Am J Sports Med. 2019 Jul;47(9):2174-2187 - PubMed
  46. Knee Surg Sports Traumatol Arthrosc. 2021 Feb;29(2):329-332 - PubMed
  47. Ryumachi. 1977 Jul;17(4):371-2 - PubMed
  48. Sports Health. 2020 Jan/Feb;12(1):58-60 - PubMed
  49. J Biomech. 2014 Jun 27;47(9):2130-6 - PubMed
  50. J Pediatr Orthop. 2019 Jul;39(Issue 6, Supplement 1 Suppl 1):S53-S55 - PubMed
  51. Biomaterials. 2021 Jan;267:120466 - PubMed

Publication Types