Display options
Share it on

J Mass Spectrom. 2021 May;56(5):e4723. doi: 10.1002/jms.4723.

Ionization of organic molecules with metal ions formed in the laser plasma.

Journal of mass spectrometry : JMS

Vasily V Filatov, Sergey M Nikiforov, Vladislav V Zelenov, Andrey V Pento, Aygul B Bukharina, Ilia V Sulimenkov, Vladimir S Brusov, Jiajun Yu, Viacheslav I Kozlovskiy

Affiliations

  1. Chernogolovka Branch of the N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Russia.
  2. Prokhorov General Physics Institute, RAS, Moscow, 119991, Russia.
  3. Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China.

PMID: 33813767 DOI: 10.1002/jms.4723

Abstract

A laser plasma ion source was used to ionize volatile organic compounds in a gas sample. The plasma was generated on a metal target in the intermediate vacuum region of ~0.3 Torr using a pulsed Nd:YAG laser with a wavelength of 1 μm. The resulting ions mass spectra were acquired using orthogonal time-of-flight mass spectrometer (O-TOF MS). When using a copper target, the ions formed are simple complexes (CuM

© 2021 John Wiley & Sons, Ltd.

Keywords: Cu; complex; ionization; octane; rate constant

References

  1. Beynon JH. Mass Spectrometry and Its Applications to Organic Chemistry. Elsevier Publishing Co.; 1960. - PubMed
  2. Zenkevich IG, Nosova VE. Gas-chromatographic retention indices in GC/MS identification of alkyl dichlorophosphates, dialkyl chlorophosphates, and their thio analogues. J Anal Chem. 2019;74:1421-1436. https://doi.org/10.1134/S1061934819140120 - PubMed
  3. Talroze VL, Lyubimova AK. Secondary processes in the ion source of the mass spectrometer. Dokl Akad Nauk SSSR. 1952;86:909-912. - PubMed
  4. Munson MSB, Field FH. Chemical ionization mass spectrometry. I. General introduction. J Am Chem Soc. 1966;88(12):2621-2630. https://doi.org/10.1021/ja00964a001 - PubMed
  5. Kebarle P. Ion-molecule equilibria, how and why. J Am Soc Mass Spectrom. 1992;3(1):1-9. https://doi.org/10.1021/jasms.8b00210 - PubMed
  6. Lipsky SR, Shahin MM. Sensitive ionization system for the detection of permanent gases and organic vapours by gas chromatography. Nature. 1963;197(4867):625-626. https://doi.org/10.1038/197625a0 - PubMed
  7. Anderson DR, Bierbaum VR, Depuy CH, et al. Flowing afterglow studies of organic positive ions generated by penning ionization using metastable argon atoms. Int J Mass Spectrom Ion Phys. 1983;52:62-94. https://doi.org/10.1016/0020-7381(83)85092-X - PubMed
  8. McLuckey SA, Glish GL, Asano KG, et al. Atmospheric sampling glow discharge ionization source for the determination of trace organic compounds in ambient air. Anal Chem. 1988;60(20):2220-2227. https://doi.org/10.1021/ac00171a012 - PubMed
  9. Andrade FJ, Shelley JT, Wetzel WC, et al. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal Chem. 2008;80(8):2646-2653. https://doi.org/10.1021/ac800156y - PubMed
  10. Hiraoka K, Fujimaki S, Kambara S, Furuya H, Okazaki S. Atmospheric-pressure Penning ionization mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:2323-2330. https://doi.org/10.1002/rcm.1624 - PubMed
  11. Jordan A, Haidacher S, Hanel G, et al. An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI−MS). International Journal of Mass Spectrometry. 2009;286(1):32-38. https://doi.org/10.1016/j.ijms.2009.06.006 - PubMed
  12. Verenchikov AN, Kolosov AP. A soft ionization method for semivolatile compounds. J Anal Chem. 2015;70:1527-1532. https://doi.org/10.1134/S1061934815130092 - PubMed
  13. Sulimenkov IV, Brusov VS, Zelenov VV, et al. Study of gaseous sample ionization by excited particles formed in glow discharge using high-resolution orthogonal acceleration time-of-flight mass spectrometer. Journal of Analytical Chemistry. 2017;72(13):1331-1339. https://doi.org/10.1134/S1061934817130111 - PubMed
  14. Sulimenkov IV, Brusov VS, Pikhtelev AR, Zelenov VV, Kozlovskiy VI, Analysis of admixtures of volatile organic compounds in gas samples via the Glow discharge ion source combined with the high resolution O-TOF MS. Vth Russian Conference “Mass spectrometry and it's application problems”, October 8-11, 2013, Moscow, Russia, Poster, Book of Abstracts, p. 119. - PubMed
  15. Sulimenkov IV, Brusov VS, Pikhtelev AR, Zelenov VV, Filatov VV, Kozlovskiy VI. Analysis of gaseous samples containing organic compounds traces using the glow discharge ion source combined with the high resolution O-TOF MS. X International Mass Spectrometry Conference on Petrochemistry and Environmental (PETROMASS 2014), September 1-4, 2014. Tbilisi, Georgia, Book of Abstracts, p. 29-30 - PubMed
  16. Hodges RV, Beauchamp JL. Application of alkali ions in chemical ionization mass spectrometry. Anal Chem. 1976;48(6):825-829. https://doi.org/10.1021/ac60370a034 - PubMed
  17. Fujii T. Alkali-metal ion/molecule association reactions and their applications to mass spectrometry. Mass Spectrom Rev. 2000;19:111-138. https://doi.org/10.1002/1098-2787(200005/06)19:3%3C111::AID-MAS1%3E3.0.CO;2-K - PubMed
  18. Fujii T, Ogura M, Jimba H. Chemical ionization mass spectrometry with lithium ion attachment to the molecule. Anal Chem. 1989;61(9):1026-1029. https://doi.org/10.1021/ac00184a022 - PubMed
  19. Selvin PC, Fujii T. Lithium ion attachment mass spectrometry: instrumentation and features. Rev Sci Instrum. 2001;72:2248-2252. https://doi.org/10.1063/1.1362439 - PubMed
  20. Saito N, Nanjyo J-I, Taneda Y, Shiokawa Y, Tanimoto M. Development of a tabletop time-of-flight mass spectrometer with an ion attachment ionization technique. Rapid Commun Mass Spectrom. 2007;21:2654-2662. https://doi.org/10.1002/rcm.3139 - PubMed
  21. Burnier RC, Byrd GD, and Freiser BS, Copper(I) chemical ionization-mass spectrometric analysis of esters and ketones, Anal Chem, 52, 11, September 1980, p. 1641-1650. https://doi.org/10.1021/ac50061a026 - PubMed
  22. Eller K, Schwarz H. Organometallic chemistry in the gas phase. Chem Rev. 1991;91(6):1121-1177. https://doi.org/10.1021/cr00006a002 - PubMed
  23. Zhang T, Li Z-Y, Liu Q-Y, He S-G. Chemical ionization of large linear alkanes and small oxidized volatile organic compounds by the reactions with atomic gold cations. Anal Chem. 2017;89(17):9083-9090. https://doi.org/10.1021/acs.analchem.7b01791 - PubMed
  24. Tonkyn R, Ronan M, Weisshaar JC. Multicollision chemistry of gas-phase transition-metal ions with small alkanes: rate constants and product branching at 0.75 Torr of He. J Phys Chem. 1988;92:92-102. https://doi.org/10.1021/j100312a022 - PubMed
  25. Tonkin R, Weisshaar JC. Transition-metal cation chemistry in 1 Torr of He: M+ + C2H6 reaction rates. J Phys Chem. 1986;90:2305-2308. https://doi.org/10.1021/j100402a010 - PubMed
  26. Tonkin R, Weisshaar JC. Reactions of gas-phase dipositive titanium ions with alkanes. J Am Chem Soc. 1986;108:7128-7130. https://doi.org/10.1021/ja00282a062 - PubMed
  27. Cheng P, Koyanagi GK, Bohme DK. Heavy water reactions with atomic transition-metal and main-group cations: gas phase room-temperature kinetics and periodicities in reactivity. J Phys Chem A. 2007;111:8561-8573. - PubMed
  28. http://www.yorku.ca/dkbohme/research/element/Cu.html - PubMed
  29. Koyanagi GK, Bohme DK. Kinetics and thermodynamics for the bonding of benzene to 20 main-group atomic cations: formation of half-sandwiches, full sandwiches and beyond. Int J Mass Spectrom. 2003;227:563-575. - PubMed
  30. Spesyvyi A (2019): Gas phase reactions of iron, copper and rhodium cations with monoterpenes. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.9913094.v1 - PubMed
  31. Bierstedt A, Riedel J. Airborne laser-spark for ambient desorption/ionization. Eur J Mass Spectrom. 2016;22:105-114. https://doi.org/10.1255/ejms.1417 - PubMed
  32. Bukharina A, Pento A, Nikiforov S, Alimpiev S, Simanovsky Y, Grechnikov A, 2018 Laser mass spectrometry for biological tissue analysis and pathology identification. International Conference Laser Optics (ICLO), 4-8 June 2018, St. Petersburg, Russia, p. 469, https://doi.org/10.1109/LO.2018.8435435 - PubMed
  33. Bierstedt A, Kersten H, Glaus R, Gornushkin IB, Panne U, Riedel J. Characterization of an airborne laser-spark ion source for ambient mass spectrometry. Anal Chem. 2017;89(6):3437-3444. https://doi.org/10.1021/acs.analchem.6b04178 - PubMed
  34. Pento AV, Nikiforov SM, Simanovsky YO, Grechnikov AA, Alimpiev SS. Laser ablation and ionisation by laser plasma radiation in the atmospheric-pressure mass spectrometry of organic compounds. Quantum Electron. 2013;43(1):55-59. https://doi.org/10.1070/qe2013v043n01abeh015065 - PubMed
  35. Dodonov AF, Kozlovski VI, Soulimenkov IV, et al. High-resolution electrospray ionization orthogonal-injection time-of-flight mass spectrometer. Eur J Mass Spectrom. 2000;6(6):481-490. https://doi.org/10.1255/ejms.378 - PubMed
  36. Bogaerts A, Gijbels R, Carman RJ. Collisional-radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge. Spectrochim Acta Part B At Spectrosc. 1998;53(12):1679-1703. https://doi.org/10.1016/S0584-8547(98)00201-8 - PubMed
  37. Doria D, Lorusso A, Belloni F, Nassisi V. Characterization of a nonequilibrium XeCl laser-plasma by a movable faraday cup. Rev Sci Instrum. 2004;75:387-392. https://doi.org/10.1063/1.1641157 - PubMed
  38. Fainberg A. Explosives detection for aviation security. Science. 1992;255(5051):1531-1537. - PubMed
  39. Robinson PJ and Holbrook KA, Unimolecular Reactions, by Wiley-Interscience, 1972. - PubMed
  40. Taylor WS, Everett WR, Babcock LM, McNeal TL. Application of a sputtering glow discharge ion source to a flowing afterglow study of transition metal ion chemistry. Int J Mass Spectrom Ion Processes. 1993;125(1):45-54. https://doi.org/10.1016/0168-1176(93)80015-7 - PubMed

Publication Types

Grant support