Display options
Share it on

Proteins. 2021 Mar 27; doi: 10.1002/prot.26078. Epub 2021 Mar 27.

Insights into the mechanisms of light-oxygen-voltage domain color tuning from a set of high-resolution X-ray structures.

Proteins

Alina Remeeva, Vera V Nazarenko, Kirill Kovalev, Ivan M Goncharov, Anna Yudenko, Roman Astashkin, Valentin Gordeliy, Ivan Gushchin

Affiliations

  1. Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
  2. Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France.
  3. Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
  4. JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
  5. Institute of Crystallography, RWTH Aachen University, Aachen, Germany.

PMID: 33774867 DOI: 10.1002/prot.26078

Abstract

Light-oxygen-voltage (LOV) domains are widespread photosensory modules that can be used in fluorescence microscopy, optogenetics and controlled production of reactive oxygen species. All of the currently known LOV domains have absorption maxima in the range of ~440 to ~450 nm, and it is not clear whether they can be shifted significantly using mutations. Here, we have generated a panel of LOV domain variants by mutating the key chromophore-proximal glutamine aminoacid of a thermostable flavin based fluorescent protein CagFbFP (Gln148) to asparagine, aspartate, glutamate, histidine, lysine and arginine. Absorption spectra of all of the mutants are blue-shifted, with the maximal shift of 8 nm observed for the Q148H variant. While CagFbFP and its Q148N/D/E variants are not sensitive to pH, Q148H/K/R reveal a moderate red shift induced byacidic pH. To gain further insight, we determined high resolution crystal structures of all of the mutants studied at the resolutions from 1.07 Å for Q148D to 1.63 Å for Q148R. Whereas in some of the variants, the aminoacid 148 remains in the vicinity of the flavin, in Q148K, Q148R and partially Q148D, the C-terminus of the protein unlatches and the side chain of the residue 148 is reoriented away from the chromophore. Our results explain the absence of color shifts from replacing Gln148 with charged aminoacids and pave the way for rational design of color-shifted flavin based fluorescent proteins.

© 2021 Wiley Periodicals LLC.

Keywords: LOV domain; X-ray crystallography; color tuning; mutagenesis; protein design

References

  1. Losi A, Gärtner W. Solving blue light riddles: new lessons from flavin-binding LOV photoreceptors. Photochem Photobiol. 2017;93(1):141-158. https://doi.org/10.1111/php.12674. - PubMed
  2. Glantz ST, Carpenter EJ, Melkonian M, et al. Functional and topological diversity of LOV domain photoreceptors. Proc Natl Acad Sci U S A. 2016;113(11):E1442-E1451. https://doi.org/10.1073/pnas.1509428113. - PubMed
  3. Möglich A. Signal transduction in photoreceptor histidine kinases. Protein Sci. 2019;28(11):1923-1946. https://doi.org/10.1002/pro.3705. - PubMed
  4. Conrad KS, Manahan CC, Crane BR. Photochemistry of flavoprotein light sensors. Nat Chem Biol. 2014;10(10):801-809. https://doi.org/10.1038/nchembio.1633. - PubMed
  5. Herrou J, Crosson S. Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Microbiol. 2011;9(10):713-723. https://doi.org/10.1038/nrmicro2622. - PubMed
  6. Drepper T, Eggert T, Circolone F, et al. Reporter proteins for in vivo fluorescence without oxygen. Nat Biotech. 2007;25(4):443-445. https://doi.org/10.1038/nbt1293. - PubMed
  7. Chapman S, Faulkner C, Kaiserli E, et al. The photoreversible fluorescent protein ILOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci U S A. 2008;105(50):20038-20043. https://doi.org/10.1073/pnas.0807551105. - PubMed
  8. Mukherjee A, Schroeder CM. Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr Opin Biotechnol. 2015;31:16-23. https://doi.org/10.1016/j.copbio.2014.07.010. - PubMed
  9. Chia HE, Marsh ENG, Biteen JS. Extending fluorescence microscopy into anaerobic environments. Curr Opin Chem Biol. 2019;51:98-104. https://doi.org/10.1016/j.cbpa.2019.05.008. - PubMed
  10. Kim NM, Sinnott RW, Sandoval NR. Transcription factor-based biosensors and inducible systems in non-model bacteria: current progress and future directions. Curr Opin Biotechnol. 2020;64:39-46. https://doi.org/10.1016/j.copbio.2019.09.009. - PubMed
  11. Buckley AM, Petersen J, Roe AJ, Douce GR, Christie JM. LOV-based reporters for fluorescence imaging. Curr Opin Chem Biol. 2015;27:39-45. https://doi.org/10.1016/j.cbpa.2015.05.011. - PubMed
  12. Pudasaini A, El-Arab KK, Zoltowski BD. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front Mol Biosci. 2015;2:18. https://doi.org/10.3389/fmolb.2015.00018. - PubMed
  13. Losi A, Gardner KH, Möglich A. Blue-light receptors for optogenetics. Chem Rev. 2018;118(21):10659-10709. https://doi.org/10.1021/acs.chemrev.8b00163. - PubMed
  14. Westberg M, Etzerodt M, Ogilby PR. Rational design of genetically encoded singlet oxygen photosensitizing proteins. Curr Opin Struct Biol. 2019;57:56-62. https://doi.org/10.1016/j.sbi.2019.01.025. - PubMed
  15. Endres S, Wingen M, Torra J, et al. An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep. 2018;8(1):1-14. https://doi.org/10.1038/s41598-018-33291-4. - PubMed
  16. Kottke T, Dick B, Fedorov R, Schlichting I, Deutzmann R, Hegemann P. Irreversible photoreduction of flavin in a mutated phot-LOV1 domain. Biochemistry. 2003;42(33):9854-9862. https://doi.org/10.1021/bi034863r. - PubMed
  17. Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry. 2000;39(31):9401-9410. https://doi.org/10.1021/bi000585+. - PubMed
  18. Swartz TE, Corchnoy SB, Christie JM, et al. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem. 2001;276(39):36493-36500. https://doi.org/10.1074/jbc.M103114200. - PubMed
  19. Yee EF, Diensthuber RP, Vaidya AT, et al. Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue. Nat Commun. 2015;6(1):1-10. https://doi.org/10.1038/ncomms10079. - PubMed
  20. Jentzsch K, Wirtz A, Circolone F, et al. Mutual exchange of kinetic properties by extended mutagenesis in two short LOV domain proteins from pseudomonas Putida. Biochemistry. 2009;48(43):10321-10333. https://doi.org/10.1021/bi901115z. - PubMed
  21. Zoltowski BD, Vaccaro B, Crane BR. Mechanism-based tuning of a LOV domain photoreceptor. Nat Chem Biol. 2009;5(11):827-834. https://doi.org/10.1038/nchembio.210. - PubMed
  22. Zayner JP, Sosnick TR. Factors that control the chemistry of the LOV domain photocycle. PLoS ONE. 2014;9(1):e87074. https://doi.org/10.1371/journal.pone.0087074. - PubMed
  23. Fettweiss T, Röllen K, Granzin J, et al. Mechanistic basis of the fast dark recovery of the short LOV protein DsLOV from Dinoroseobacter Shibae. Biochemistry. 2018;57(32):4833-4847. https://doi.org/10.1021/acs.biochem.8b00645. - PubMed
  24. Crosson S, Moffat K. Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell. 2002;14(5):1067-1075. https://doi.org/10.1105/tpc.010475. - PubMed
  25. Fedorov R, Schlichting I, Hartmann E, Domratcheva T, Fuhrmann M, Hegemann P. Crystal structures and molecular mechanism of a light-induced signaling switch: the phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys J. 2003;84(4):2474-2482. https://doi.org/10.1016/S0006-3495(03)75052-8. - PubMed
  26. Halavaty AS, Moffat K. N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry. 2007;46(49):14001-14009. https://doi.org/10.1021/bi701543e. - PubMed
  27. Zoltowski BD, Schwerdtfeger C, Widom J, et al. Conformational switching in the fungal light sensor vivid. Science. 2007;316(5827):1054-1057. https://doi.org/10.1126/science.1137128. - PubMed
  28. Jones MA, Feeney KA, Kelly SM, Christie JM. Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J Biol Chem. 2007;282(9):6405-6414. https://doi.org/10.1074/jbc.M605969200. - PubMed
  29. Nozaki D, Iwata T, Ishikawa T, Todo T, Tokutomi S, Kandori H. Role of Gln1029 in the Photoactivation processes of the LOV2 domain in Adiantum Phytochrome3. Biochemistry. 2004;43(26):8373-8379. https://doi.org/10.1021/bi0494727. - PubMed
  30. Nash AI, Ko W-H, Harper SM, Gardner KH. A conserved glutamine plays a central role in LOV domain signal transmission and its duration. Biochemistry. 2008;47(52):13842-13849. https://doi.org/10.1021/bi801430e. - PubMed
  31. Avila-Pérez M, Vreede J, Tang Y, et al. In vivo mutational analysis of YtvA from Bacillus subtilis. J Biol Chem. 2009;284(37):24958-24964. https://doi.org/10.1074/jbc.M109.033316. - PubMed
  32. Pudasaini A, Green R, Song YH, et al. Steric and electronic interactions at Gln154 in ZEITLUPE induce reorganization of the LOV domain dimer interface. Biochemistry. 2021;60(2):95-103. https://doi.org/10.1021/acs.biochem.0c00819. - PubMed
  33. Raffelberg S, Mansurova M, Gärtner W, Losi A. Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen-bonding network. J Am Chem Soc. 2011;133(14):5346-5356. https://doi.org/10.1021/ja1097379. - PubMed
  34. Diensthuber RP, Engelhard C, Lemke N, et al. Biophysical, mutational, and functional investigation of the chromophore-binding pocket of light-oxygen-voltage photoreceptors. ACS Synth Biol. 2014;3(11):811-819. https://doi.org/10.1021/sb400205x. - PubMed
  35. Glantz ST, Berlew EE, Jaber Z, Schuster BS, Gardner KH, Chow BY. Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids. Proc Natl Acad Sci U S A. 2018;115(33):E7720-E7727. https://doi.org/10.1073/pnas.1802832115. - PubMed
  36. Kopka B, Magerl K, Savitsky A, et al. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci Rep. 2017;7(1):13346. https://doi.org/10.1038/s41598-017-13420-1. - PubMed
  37. Raffelberg S, Gutt A, Gärtner W, et al. The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein. Biol Chem. 2013;394(11):1517-1528. https://doi.org/10.1515/hsz-2013-0163. - PubMed
  38. Wingen M, Potzkei J, Endres S, et al. The Photophysics of LOV-based fluorescent proteins-new tools for cell biology. Photochem Photobiol Sci. 2014;13(6):875-883. https://doi.org/10.1039/C3PP50414J. - PubMed
  39. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev. 2014;114(1):126-163. https://doi.org/10.1021/cr4003769. - PubMed
  40. Gushchin I, Gordeliy V. Microbial rhodopsins. Subcell Biochem. 2018;87:19-56. https://doi.org/10.1007/978-981-10-7757-9_2. - PubMed
  41. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010;90(3):1103-1163. https://doi.org/10.1152/physrev.00038.2009. - PubMed
  42. Rodriguez EA, Campbell RE, Lin JY, et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci. 2017;42(2):111-129. https://doi.org/10.1016/j.tibs.2016.09.010. - PubMed
  43. Lambert TJ. FPbase: A community-editable fluorescent protein database. Nat Methods. 2019;16(4):277-278. https://doi.org/10.1038/s41592-019-0352-8. - PubMed
  44. Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic spectral tuning maps for biological chromophores. J Phys Chem B. 2019;123(23):4813-4824. https://doi.org/10.1021/acs.jpcb.9b00489. - PubMed
  45. Khrenova MG, Nemukhin AV, Domratcheva T. Theoretical characterization of the flavin-based fluorescent protein ILOV and its Q489K mutant. J Phys Chem B. 2015;119(16):5176-5183. https://doi.org/10.1021/acs.jpcb.5b01299. - PubMed
  46. Davari MD, Kopka B, Wingen M, et al. Photophysics of the LOV-based fluorescent protein variant ILOV-Q489K determined by simulation and experiment. J Phys Chem B. 2016;120(13):3344-3352. https://doi.org/10.1021/acs.jpcb.6b01512. - PubMed
  47. Khrenova MG, Meteleshko YI, Nemukhin AV. Mutants of the flavoprotein ILOV as prospective red-shifted fluorescent markers. J Phys Chem B. 2017;121(43):10018-10025. https://doi.org/10.1021/acs.jpcb.7b07533. - PubMed
  48. Mathes T, Vogl C, Stolz J, Hegemann P. In vivo generation of flavoproteins with modified cofactors. J Mol Biol. 2009;385(5):1511-1518. https://doi.org/10.1016/j.jmb.2008.11.001. - PubMed
  49. Arinkin V, Granzin J, Röllen K, et al. Structure of a LOV protein in Apo-state and implications for construction of LOV-based optical tools. Sci Rep. 2017;7(1):1-10. https://doi.org/10.1038/srep42971. - PubMed
  50. Kalvaitis ME, Johnson LA, Mart RJ, Rizkallah P, Allemann RK. A noncanonical chromophore reveals structural rearrangements of the light-oxygen-voltage domain upon photoactivation. Biochemistry. 2019;58(22):2608-2616. https://doi.org/10.1021/acs.biochem.9b00255. - PubMed
  51. Silva-Junior MR, Mansurova M, Gärtner W, Thiel W. Photophysics of structurally modified flavin derivatives in the blue-light photoreceptor YtvA: a combined experimental and theoretical study. Chembiochem. 2013;14(13):1648-1661. https://doi.org/10.1002/cbic.201300217. - PubMed
  52. Mansurova M, Simon J, Salzmann S, Marian CM, Gärtner W. Spectroscopic and theoretical study on electronically modified chromophores in LOV domains: 8-bromo- and 8-trifluoromethyl-substituted flavins. Chembiochem. 2013;14(5):645-654. https://doi.org/10.1002/cbic.201200670. - PubMed
  53. Bracker M, Dinkelbach F, Weingart O, Kleinschmidt M. Impact of fluorination on the photophysics of the flavin chromophore: a quantum chemical perspective. Phys Chem Chem Phys. 2019;21(19):9912-9923. https://doi.org/10.1039/C9CP00805E. - PubMed
  54. Marian CM, Nakagawa S, Rai-Constapel V, Karasulu B, Thiel W. Photophysics of flavin derivatives absorbing in the blue-green region: thioflavins as potential cofactors of photoswitches. J Phys Chem B. 2014;118(7):1743-1753. https://doi.org/10.1021/jp4098233. - PubMed
  55. I. Meteleshko, V. Nemukhin, A.; G. Khrenova, M. Novel flavin-based fluorescent proteins with red-shifted emission bands: a computational study. Photochem Photobiol Sci 2019, 18 (1), 177-189. https://doi.org/10.1039/C8PP00361K. - PubMed
  56. Nazarenko VV, Remeeva A, Yudenko A, et al. A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for ultra-high resolution structural studies. Photochem Photobiol Sci. 2019;18(7):1793-1805. https://doi.org/10.1039/c9pp00067d. - PubMed
  57. Studier FW. Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif. 2005;41(1):207-234. https://doi.org/10.1016/j.pep.2005.01.016. - PubMed
  58. Röllen K, Granzin J, Remeeva A, et al. Structural and mechanistic insight into spectral tuning in flavin-binding fluorescent proteins. bioRxiv. 2021;425906. https://doi.org/10.1101/2021.01.08.425906. - PubMed
  59. Kabsch W. XDS. Acta Crystallogr Sect D Biol Crystallogr. 2010;66(2):125-132. https://doi.org/10.1107/S0907444909047337. - PubMed
  60. Evans P. Scaling and assessment of data quality. Acta Crystallogr Sect D Biol Crystallogr. 2005;62(1):72-82. https://doi.org/10.1107/S0907444905036693. - PubMed
  61. Tickle IJ, Flensburg C, Keller P, et al. STARANISO. Cambridge, UK: Global Phasing Ltd. 2018. - PubMed
  62. Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr Sect D Biol Crystallogr. 2009;66(1):22-25. https://doi.org/10.1107/S0907444909042589. - PubMed
  63. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Cryst D. 2010;66(4):486-501. https://doi.org/10.1107/S0907444910007493. - PubMed
  64. Murshudov GN, Skubák P, Lebedev AA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D Biol Crystallogr. 2011;67(4):355-367. https://doi.org/10.1107/S0907444911001314. - PubMed
  65. Rupprecht C, Wingen M, Potzkei J, Gensch T, Jaeger K-E, Drepper T. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular PH. J Biotechnol. 2017;258:25-32. https://doi.org/10.1016/j.jbiotec.2017.05.006. - PubMed
  66. Liebschner D, Afonine PV, Moriarty NW, et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr D Struct Biol. 2017;73(Pt 2):148-157. https://doi.org/10.1107/S2059798316018210. - PubMed
  67. Isom DG, Castañeda CA, Cannon BR, E, B. G.-M. Large shifts in PKa values of lysine residues buried inside a protein. Proc Natl Acad Sci U S A. 2011;108(13):5260-5265. https://doi.org/10.1073/pnas.1010750108. - PubMed
  68. Petrovskaya LE, Balashov SP, Lukashev EP, et al. ESR-A retinal protein with unusual properties from Exiguobacterium Sibiricum. Biochemistry (Moscow). 2015;80(6):688-700. - PubMed
  69. Sooriyaarachchi S, Chofor R, Risseeuw MDP, et al. Targeting an aromatic hotspot in Plasmodium falciparum 1-deoxy-d-Xylulose-5-phosphate reductoisomerase with β-arylpropyl analogues of fosmidomycin. ChemMedChem. 2016;11(18):2024-2036. https://doi.org/10.1002/cmdc.201600249. - PubMed
  70. Bloom JD, Labthavikul ST, Otey CR, Arnold FH. Protein stability promotes evolvability. Proc Natl Acad Sci U S A. 2006;103(15):5869-5874. https://doi.org/10.1073/pnas.0510098103. - PubMed
  71. Pudasaini A, Shim JS, Song YH, et al. Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis. eLife. 2017;6:e21646. https://doi.org/10.7554/eLife.21646. - PubMed
  72. Polverini E, Schackert FK, Losi A. Interplay among the “flipping” glutamine, a conserved phenylalanine, water and hydrogen bonds within a blue-light sensing LOV domain. Photochem Photobiol Sci. 2020;19(7):892-904. https://doi.org/10.1039/D0PP00082E. - PubMed
  73. Kabir MP, Orozco-Gonzalez Y, Gozem S. Electronic spectra of flavin in different redox and protonation states: a computational perspective on the effect of the electrostatic environment. Phys Chem Chem Phys. 2019;21(30):16526-16537. https://doi.org/10.1039/C9CP02230A. - PubMed
  74. Nemukhin AV, Grigorenko BL, Khrenova MG, Krylov AI. Computational challenges in modeling of representative bioimaging proteins: GFP-like proteins, flavoproteins, and phytochromes. J Phys Chem B. 2019;123(29):6133-6149. https://doi.org/10.1021/acs.jpcb.9b00591. - PubMed
  75. Yudenko A, Smolentseva A, Maslov I, et al. Rational design of a split flavin-based fluorescent reporter. ACS Synth Biol. 2021;10(1):72-83. https://doi.org/10.1021/acssynbio.0c00454. - PubMed
  76. Remeeva A, Nazarenko VV, Goncharov IM, et al. Effects of proline substitutions on the thermostable LOV domain from Chloroflexus aggregans. Crystals. 2020;10(4):256. https://doi.org/10.3390/cryst10040256. - PubMed
  77. Christie JM, Hitomi K, Arvai AS, et al. Structural tuning of the fluorescent protein ILOV for improved photostability. J Biol Chem. 2012;287(26):22295-22304. https://doi.org/10.1074/jbc.M111.318881. - PubMed

Publication Types

Grant support