Display options
Share it on

Front Physiol. 2021 Mar 18;12:641461. doi: 10.3389/fphys.2021.641461. eCollection 2021.

Sex Differences in Rest-Activity Circadian Rhythm in Patients With Metabolic Syndrome.

Frontiers in physiology

Antonino Mulè, Eleonora Bruno, Patrizia Pasanisi, Letizia Galasso, Lucia Castelli, Andrea Caumo, Fabio Esposito, Eliana Roveda, Angela Montaruli

Affiliations

  1. Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
  2. Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
  3. IRCCS, Istituto Ortopedico Galeazzi, Milan, Italy.

PMID: 33815145 PMCID: PMC8013705 DOI: 10.3389/fphys.2021.641461

Abstract

Rest-Activity circadian Rhythm (RAR) can be used as a marker of the circadian timing system. Recent studies investigated the relationship between irregular circadian rhythms and cardiovascular risk factors such as hypertension, obesity, and dyslipidemia. These factors are related to the Metabolic Syndrome (MS), a clustering of metabolic risk factors that increases the risk of several cardiovascular and metabolic diseases. This cross-sectional analysis aimed to explore the RAR characteristics by actigraphy in subjects with MS, particularly in relation to sex and MS parameters, using parametric and non-parametric analyses. Distinguishing the characteristics of RAR based on sex could prove useful as a tool to improve the daily level of activity and set up customized activity programs based on each person's circadian activity profile. This study showed that female participants exhibited higher values than male participants in the Midline Estimating Statistic of Rhythm (MESOR) (243.3 ± 20.0 vs 197.6 ± 17.9 activity count), Amplitude (184.5 ± 18.5 vs 144.2 ± 17.2 activity count), which measures half of the extent of the rhythmic variation in a cycle, and the most active 10-h period (M10) (379.08 ± 16.43 vs 295.13 ± 12.88 activity count). All these parameters are indicative of a higher daily activity level in women. Female participants also had lower Intradaily Variability (IV) than male participants (0.75 ± 0.03 vs 0.85 ± 0.03 activity count), which indicates a more stable and less fragmented RAR. These preliminary data provide the first experimental evidence of a difference in RAR parameters between male and female people with MS.

Copyright © 2021 Mulè, Bruno, Pasanisi, Galasso, Castelli, Caumo, Esposito, Roveda and Montaruli.

Keywords: actigraphy; activity level; chronobiology; circadian rhythms; gender differences; intradaily variability; metabolic syndrome; rest-activity circadian rhythm

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. MethodsX. 2016 May 24;3:430-5 - PubMed
  2. Curr Biol. 2013 Mar 4;23(5):372-81 - PubMed
  3. J Am Coll Cardiol. 2010 Sep 28;56(14):1113-32 - PubMed
  4. JAMA. 2002 Jan 16;287(3):356-9 - PubMed
  5. Public Health Nutr. 2002 Dec;5(6B):1147-62 - PubMed
  6. Circulation. 2009 Oct 20;120(16):1640-5 - PubMed
  7. Chronobiol Int. 2019 Aug;36(8):1156-1165 - PubMed
  8. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1657-62 - PubMed
  9. Metabolism. 2004 Nov;53(11):1503-11 - PubMed
  10. J Biol Rhythms. 2005 Jun;20(3):225-36 - PubMed
  11. Diabetes. 2002 Oct;51(10):3120-7 - PubMed
  12. Nutr Metab Cardiovasc Dis. 2005 Aug;15(4):250-4 - PubMed
  13. Chronobiol Int. 2018 Feb;35(2):198-207 - PubMed
  14. Int J Behav Nutr Phys Act. 2013 Mar 04;10:30 - PubMed
  15. Chronobiol Int. 2014 Oct;31(8):891-900 - PubMed
  16. Chronobiol Int. 2011 Apr;28(3):258-66 - PubMed
  17. Chronobiologia. 1977;4 Suppl 1:1-189 - PubMed
  18. Eat Weight Disord. 2014 Jun;19(2):225-32 - PubMed
  19. Chronobiol Int. 2005;22(4):695-709 - PubMed
  20. Natl Health Stat Report. 2009 May 5;(13):1-7 - PubMed
  21. Sci Transl Med. 2012 Apr 11;4(129):129ra43 - PubMed
  22. Diabetes. 2014 Jun;63(6):1860-9 - PubMed
  23. Chronobiol Int. 2015;32(6):802-13 - PubMed
  24. Med Sci Sports Exerc. 2013 Mar;45(3):481-9 - PubMed
  25. Ecol Food Nutr. 2015;54(1):43-56 - PubMed
  26. Tumori. 2018 Mar-Apr;104(2):137-142 - PubMed
  27. Chronobiologia. 1979 Oct-Dec;6(4):305-23 - PubMed
  28. PLoS One. 2018 Jun 19;13(6):e0199293 - PubMed
  29. Public Health Nutr. 2016 Jun;19(9):1674-83 - PubMed
  30. Diabetes Metab Syndr. 2014 Jul-Sep;8(3):170-6 - PubMed
  31. Diabetes Care. 2010 Nov;33(11):2457-61 - PubMed
  32. Chronobiol Int. 2002 Jan;19(1):313-23 - PubMed
  33. BMC Public Health. 2011 Aug 05;11:624 - PubMed
  34. Chronobiol Int. 2020 Jun;37(6):946-951 - PubMed
  35. Ageing Res Rev. 2006 Feb;5(1):33-51 - PubMed
  36. J Diabetes Res. 2018 Aug 5;2018:7198274 - PubMed
  37. Chronobiol Int. 2019 Oct;36(10):1311-1315 - PubMed
  38. Gerontology. 2017;63(2):118-128 - PubMed
  39. Cancer Res. 2009 Jun 1;69(11):4700-7 - PubMed

Publication Types