Display options
Share it on

Front Psychiatry. 2021 Mar 18;12:630406. doi: 10.3389/fpsyt.2021.630406. eCollection 2021.

Abnormal Habituation of the Auditory Event-Related Potential P2 Component in Patients With Schizophrenia.

Frontiers in psychiatry

Prune Mazer, Inês Macedo, Tiago O Paiva, Fernando Ferreira-Santos, Rita Pasion, Fernando Barbosa, Pedro Almeida, Celeste Silveira, Cassilda Cunha-Reis, João Marques-Teixeira

Affiliations

  1. Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences of the University of Porto, Porto, Portugal.
  2. School of Health, Polytechnic Institute of Porto, Porto, Portugal.
  3. Faculty of Law, School of Criminology and Interdisciplinary Research Center on Crime, Justice and Security, University of Porto, Porto, Portugal.
  4. Faculty of Medicine, University of Porto, Porto, Portugal.
  5. Psychiatry Department, Hospital S. João, Porto, Portugal.

PMID: 33815168 PMCID: PMC8012906 DOI: 10.3389/fpsyt.2021.630406

Abstract

Auditory event-related potentials (ERP) may serve as diagnostic tools for schizophrenia and inform on the susceptibility for this condition. Particularly, the examination of N1 and P2 components of the auditory ERP may shed light on the impairments of information processing streams in schizophrenia. However, the habituation properties (i.e., decreasing amplitude with the repeated presentation of an auditory stimulus) of these components remain poorly studied compared to other auditory ERPs. Therefore, the current study used a roving paradigm to assess the modulation and habituation of N1 and P2 to simple (pure tones) and complex sounds (human voices and bird songs) in 26 first-episode patients with schizophrenia and 27 healthy participants. To explore the habituation properties of these ERPs, we measured the decrease in amplitude over a train of seven repetitions of the same stimulus (either bird songs or human voices). We observed that, for human voices, N1 and P2 amplitudes decreased linearly from stimulus 1-7, in both groups. Regarding bird songs, only the P2 component showed a decreased amplitude with stimulus presentation, exclusively in the control group. This suggests that patients did not show a fading of neural responses to repeated bird songs, reflecting abnormal habituation to this stimulus. This could reflect the inability to inhibit irrelevant or redundant information at later stages of auditory processing. In turn schizophrenia patients appear to have a preserved auditory processing of human voices.

Copyright © 2021 Mazer, Macedo, Paiva, Ferreira-Santos, Pasion, Barbosa, Almeida, Silveira, Cunha-Reis and Marques-Teixeira.

Keywords: EEG; N1; P2; auditory; event-related potentials; habituation; schizophrenia

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Schizophr Res. 2004 Oct 1;70(2-3):315-29 - PubMed
  2. Int J Neurosci. 2000 Nov;105(1-4):87-95 - PubMed
  3. Harv Rev Psychiatry. 2016 Mar-Apr;24(2):148-63 - PubMed
  4. Brain Res Cogn Brain Res. 2003 Oct;17(3):747-58 - PubMed
  5. Psychophysiology. 2011 Jul;48(7):980-92 - PubMed
  6. Int J Psychophysiol. 2008 Feb;67(2):81-90 - PubMed
  7. Clin Neurophysiol. 2009 May;120(5):868-77 - PubMed
  8. Schizophr Res. 2014 Jan;152(1):235-41 - PubMed
  9. PLoS One. 2012;7(2):e31001 - PubMed
  10. Brain Res. 2013 Aug 28;1528:20-7 - PubMed
  11. Psychol Med. 2013 Mar;43(3):603-18 - PubMed
  12. Philos Trans R Soc Lond B Biol Sci. 2006 Dec 29;361(1476):2109-28 - PubMed
  13. Psychiatry Res. 2004 May 30;126(3):203-15 - PubMed
  14. Clin Neurophysiol. 2012 Jul;123(7):1300-8 - PubMed
  15. Front Hum Neurosci. 2011 Jan 25;5:6 - PubMed
  16. Psychol Med. 2019 Aug;49(11):1897-1904 - PubMed
  17. Behav Brain Res. 2016 May 15;305:76-86 - PubMed
  18. Eur Arch Psychiatry Clin Neurosci. 2011 Aug;261(5):331-9 - PubMed
  19. Soc Cogn Affect Neurosci. 2017 Jun 1;12(6):902-909 - PubMed
  20. Schizophr Res. 1991 Mar-Apr;4(2):209-31 - PubMed
  21. Psychiatry Res. 2015 Feb 28;231(2):126-33 - PubMed
  22. Cereb Cortex. 2013 Jun;23(6):1388-95 - PubMed
  23. Neurosci Biobehav Rev. 2015 Aug;55:498-509 - PubMed
  24. Clin Neurophysiol. 2000 Feb;111(2):220-36 - PubMed
  25. Epilepsy Res. 2014 Dec;108(10):1945-9 - PubMed
  26. J Nerv Ment Dis. 2016 Dec;204(12):877-884 - PubMed
  27. Comput Intell Neurosci. 2011;2011:130714 - PubMed
  28. Psychiatry Res Neuroimaging. 2020 Jun 30;300:111078 - PubMed
  29. Int J Psychophysiol. 2014 Dec;94(3):311-8 - PubMed
  30. Clin Neurophysiol. 2018 Oct;129(10):2099-2111 - PubMed
  31. Cereb Cortex. 2016 May;26(5):2283-98 - PubMed
  32. Psychophysiology. 2007 Jul;44(4):620-6 - PubMed
  33. Schizophr Bull. 2010 Sep;36(5):991-1000 - PubMed
  34. BMC Psychiatry. 2013 May 30;13:158 - PubMed
  35. Psychiatry Res. 2008 Dec 15;161(3):259-74 - PubMed
  36. Schizophr Res. 2007 Dec;97(1-3):137-51 - PubMed
  37. Schizophr Res. 2013 Dec;151(1-3):124-32 - PubMed
  38. Hear Res. 2012 Dec;294(1-2):82-94 - PubMed
  39. Schizophr Res. 2004 Aug 1;69(2-3):203-17 - PubMed
  40. Front Psychiatry. 2019 Apr 15;10:223 - PubMed
  41. Exp Neurol. 2013 Dec;250:313-20 - PubMed
  42. Schizophr Res. 2008 Aug;103(1-3):298-310 - PubMed
  43. Clin Neurophysiol. 2016 Jan;127(1):499-508 - PubMed
  44. J Neurosci. 2010 Aug 18;30(33):11210-21 - PubMed
  45. J Neurosci Methods. 2004 Mar 15;134(1):9-21 - PubMed
  46. BMC Neurosci. 2009 Oct 20;10:127 - PubMed

Publication Types