Display options
Share it on

Front Physiol. 2021 Mar 10;12:632502. doi: 10.3389/fphys.2021.632502. eCollection 2021.

Soluble TIM3 and Its Ligands Galectin-9 and CEACAM1 Are in Disequilibrium During Alcohol-Related Liver Disease and Promote Impairment of Anti-bacterial Immunity.

Frontiers in physiology

Antonio Riva, Elena Palma, Dhruti Devshi, Douglas Corrigall, Huyen Adams, Nigel Heaton, Krishna Menon, Melissa Preziosi, Ane Zamalloa, Rosa Miquel, Jennifer M Ryan, Gavin Wright, Sarah Fairclough, Alexander Evans, Debbie Shawcross, Robert Schierwagen, Sabine Klein, Frank E Uschner, Michael Praktiknjo, Krum Katzarov, Tanya Hadzhiolova, Slava Pavlova, Marieta Simonova, Jonel Trebicka, Roger Williams, Shilpa Chokshi

Affiliations

  1. Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.
  2. Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.
  3. Department of Gastroenterology, Basildon University Hospital, Basildon, United Kingdom.
  4. Department of Gastroenterology, Royal Berkshire Hospital, Reading, United Kingdom.
  5. Institute of Liver Studies, King's College London, London, United Kingdom.
  6. Liver Histopathology Laboratory, Institute of Liver Studies, King's College Hospital, London, United Kingdom.
  7. Gastrointestinal and Liver Services, Royal Free Hospital, London, United Kingdom.
  8. Translational Hepatology, Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany.
  9. Department of Internal Medicine I, University of Bonn, Bonn, Germany.
  10. Department of Gastroenterology, Hepatobiliary Surgery and Transplantology, Military Medical Academy, Sofia, Bulgaria.
  11. European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain.

PMID: 33776793 PMCID: PMC7987668 DOI: 10.3389/fphys.2021.632502

Abstract

BACKGROUND AND AIMS: Immunoregulatory checkpoint receptors (CR) contribute to the profound immunoparesis observed in alcohol-related liver disease (ALD) and

METHODS: In Alcoholic Hepatitis (AH;

RESULTS: Soluble-TIM3 was the dominant plasma soluble-CR in ALD vs. HC (

CONCLUSIONS: Alcohol-related liver disease patients exhibit supra-physiological plasma levels of soluble-TIM3, particularly those with greater disease severity. This is also associated with increased levels of soluble TIM3-ligands and membrane-TIM3 expression on immune cells. Soluble-TIM3 can block the TIM3-ligand synapse and improve anti-bacterial immunity; however, the increased levels of soluble TIM3-binding ligands in patients with ALD negate any potential immunostimulatory effects. We believe that anti-TIM3 neutralizing antibodies currently in Phase I clinical trials or soluble-TIM3 should be investigated further for their ability to enhance anti-bacterial immunity. These agents could potentially represent an innovative immune-based supportive approach to rescue anti-bacterial defenses in ALD patients.

Copyright © 2021 Riva, Palma, Devshi, Corrigall, Adams, Heaton, Menon, Preziosi, Zamalloa, Miquel, Ryan, Wright, Fairclough, Evans, Shawcross, Schierwagen, Klein, Uschner, Praktiknjo, Katzarov, Hadzhiolova, Pavlova, Simonova, Trebicka, Williams and Chokshi.

Keywords: TIM3; alcohol; alcohol-related liver disease; biomarker; immune checkpoint

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. J Clin Invest. 2001 Dec;108(12):1771-80 - PubMed
  2. Eur J Immunol. 1999 Dec;29(12):3867-76 - PubMed
  3. Hepatology. 2014 Aug;60(2):487-96 - PubMed
  4. Hum Vaccin Immunother. 2014;10(3):724-33 - PubMed
  5. Oncoimmunology. 2017 Nov 9;7(2):e1385690 - PubMed
  6. Semin Immunol. 2019 Apr;42:101296 - PubMed
  7. Hepatol Commun. 2018 Apr 27;2(6):625-627 - PubMed
  8. AIDS. 2019 Jun 1;33(7):1253-1256 - PubMed
  9. JHEP Rep. 2020 Dec;2(6):100151 - PubMed
  10. Liver Int. 2014 Nov;34(10):1496-503 - PubMed
  11. J Innate Immun. 2013;5(6):625-38 - PubMed
  12. Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt B):2071-2081 - PubMed
  13. Development. 2012 Oct;139(20):3693-709 - PubMed
  14. Nature. 2015 Jan 15;517(7534):386-90 - PubMed
  15. J Hepatol. 2012;56 Suppl 1:S39-45 - PubMed
  16. N Engl J Med. 2015 Apr 23;372(17):1619-28 - PubMed
  17. Diabetes. 2012 Jul;61(7):1760-8 - PubMed
  18. J Hepatol. 2014 Jun;60(6):1310-24 - PubMed
  19. Mucosal Immunol. 2008 Nov;1 Suppl 1:S39-42 - PubMed
  20. Microb Pathog. 2011 Oct;51(4):262-7 - PubMed
  21. Crit Care. 2011;15(2):R99 - PubMed
  22. Hepatol Int. 2019 Jan;13(1):51-57 - PubMed
  23. Turk J Gastroenterol. 2019 Feb;30(2):188-191 - PubMed
  24. Int J Mol Sci. 2017 Nov 14;18(11): - PubMed
  25. Nat Rev Gastroenterol Hepatol. 2015 Apr;12(4):231-42 - PubMed
  26. Cancer Lett. 2019 Dec 28;467:50-57 - PubMed
  27. Mol Cell Biol. 2007 Mar;27(5):1960-73 - PubMed
  28. J Leukoc Biol. 2017 Dec;102(6):1313-1322 - PubMed
  29. Leuk Lymphoma. 2004 Oct;45(10):2111-8 - PubMed
  30. Pediatr Pulmonol. 2006 Jul;41(7):674-82 - PubMed
  31. Toxins (Basel). 2016 Apr 23;8(4):122 - PubMed
  32. J Dermatol. 2017 Feb;44(2):194-197 - PubMed
  33. Onco Targets Ther. 2018 Aug 13;11:4781-4784 - PubMed
  34. Cancer Lett. 2006 Apr 8;235(1):147-53 - PubMed
  35. J Leukoc Biol. 2017 Jul;102(1):105-115 - PubMed
  36. Cancer Biomark. 2018;23(3):341-351 - PubMed
  37. J Hepatol. 2016 Nov;65(5):1043-1054 - PubMed
  38. Exp Mol Med. 2003 Dec 31;35(6):501-8 - PubMed
  39. ESMO Open. 2019 Jun 12;4(Suppl 3):e000497 - PubMed
  40. J Hepatol. 2018 Jul;69(1):154-181 - PubMed
  41. Eur J Immunol. 2012 May;42(5):1180-91 - PubMed
  42. Transpl Int. 2008 Jun;21(6):593-7 - PubMed
  43. Tumour Biol. 2017 Jul;39(7):1010428317715643 - PubMed
  44. Hepatol Commun. 2020 Jan 12;4(4):588-605 - PubMed
  45. Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt B):2059-2070 - PubMed
  46. J Virol. 2015 Apr;89(7):3723-36 - PubMed
  47. Hepatol Int. 2018 May;12(3):223-236 - PubMed
  48. Int Immunopharmacol. 2012 Dec;14(4):585-92 - PubMed
  49. Nat Immunol. 2005 Dec;6(12):1245-52 - PubMed
  50. Gastroenterology. 2015 Mar;148(3):590-602.e10 - PubMed
  51. Gastroenterology. 2015 Aug;149(2):398-406.e8; quiz e16-7 - PubMed
  52. J Hepatol. 2020 Nov 20;: - PubMed
  53. PLoS One. 2015 May 21;10(5):e0127448 - PubMed
  54. PLoS One. 2012;7(10):e47648 - PubMed
  55. Alcohol Clin Exp Res. 2020 Apr;44(4):856-865 - PubMed
  56. Cell Immunol. 2005 Jun;235(2):109-16 - PubMed
  57. Gastroenterology. 2009 Aug;137(2):541-8 - PubMed
  58. EMBO J. 2007 Jan 24;26(2):494-504 - PubMed
  59. Gastroenterology. 2017 Apr;152(5):1068-1077.e4 - PubMed
  60. Int J Mol Sci. 2018 Oct 11;19(10): - PubMed
  61. J Hepatol. 2014 Dec;61(6):1385-96 - PubMed
  62. Sci Rep. 2015 Mar 11;5:9013 - PubMed
  63. Int Immunopharmacol. 2018 Feb;55:330-335 - PubMed
  64. Intensive Care Med. 2019 Oct;45(10):1360-1371 - PubMed
  65. Mol Cell Biol. 2011 Oct;31(19):3963-74 - PubMed
  66. Scand J Immunol. 2007 Nov;66(5):529-37 - PubMed
  67. Crit Care Med. 2019 May;47(5):632-642 - PubMed
  68. Gut. 2018 May;67(5):918-930 - PubMed
  69. Gastroenterology. 1978 Aug;75(2):193-9 - PubMed
  70. Exp Mol Med. 2012 Feb 29;44(2):149-58 - PubMed
  71. J Hepatol. 2015 Apr;62(1 Suppl):S131-43 - PubMed
  72. J Biol Chem. 2013 Nov 29;288(48):34529-44 - PubMed
  73. Immunol Rev. 2017 Mar;276(1):97-111 - PubMed
  74. Mol Med Rep. 2017 Jul;16(1):915-921 - PubMed
  75. PLoS One. 2014 Jan 20;9(1):e86106 - PubMed
  76. J Immunother Cancer. 2018 Nov 27;6(1):132 - PubMed
  77. J Leukoc Biol. 2003 Aug;74(2):197-205 - PubMed
  78. Nat Med. 2012 Sep;18(9):1394-400 - PubMed
  79. J Immunol. 2014 Jan 15;192(2):782-91 - PubMed
  80. Int Arch Allergy Immunol. 2005 May;137(1):45-52 - PubMed
  81. EBioMedicine. 2017 Aug;22:44-57 - PubMed
  82. J Gastroenterol Hepatol. 2017 Aug;32(8):1520-1524 - PubMed
  83. J Immunol. 2011 Mar 1;186(5):2897-909 - PubMed
  84. Tissue Antigens. 2015 Nov;86(5):325-32 - PubMed
  85. J Exp Med. 2008 Nov 24;205(12):2763-79 - PubMed

Publication Types