Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Apr 20;118(16). doi: 10.1073/pnas.2022760118.

Dnmt3a deficiency in the skin causes focal, canonical DNA hypomethylation and a cellular proliferation phenotype.

Proceedings of the National Academy of Sciences of the United States of America

David Y Chen, Ian M Ferguson, Krista A Braun, Leslie A Sutton, Nichole M Helton, Sai Mukund Ramakrishnan, Amanda M Smith, Christopher A Miller, Timothy J Ley

Affiliations

  1. Division of Dermatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110.
  2. Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110.
  3. Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110 [email protected].

PMID: 33846253 PMCID: PMC8072215 DOI: 10.1073/pnas.2022760118

Abstract

DNA hypomethylation is a feature of epidermal cells from aged and sun-exposed skin, but the mechanisms responsible for this methylation loss are not known. Dnmt3a is the dominant de novo DNA methyltransferase in the skin; while epidermal Dnmt3a deficiency creates a premalignant state in which keratinocytes are more easily transformed by topical mutagens, the conditions responsible for this increased susceptibility to transformation are not well understood. Using whole genome bisulfite sequencing, we identified a focal, canonical DNA hypomethylation phenotype in the epidermal cells of Dnmt3a-deficient mice. Single-cell transcriptomic analysis revealed an increased proportion of cells with a proliferative gene expression signature, while other populations in the skin were relatively unchanged. Although total DNMT3A deficiency has not been described in human disease states, rare patients with an overgrowth syndrome associated with behavioral abnormalities and an increased risk of cancer often have heterozygous, germline mutations in

Copyright © 2021 the Author(s). Published by PNAS.

Keywords: DNA methylation; DNMT3A; epidermis; epigenetic; premalignant

Conflict of interest statement

The authors declare no competing interest.

References

  1. N Engl J Med. 2014 Dec 25;371(26):2477-87 - PubMed
  2. JAMA Dermatol. 2015 Oct;151(10):1081-6 - PubMed
  3. N Engl J Med. 2010 Dec 16;363(25):2424-33 - PubMed
  4. Nat Genet. 2014 Jan;46(1):17-23 - PubMed
  5. Nat Biotechnol. 2018 Dec 03;: - PubMed
  6. Mol Biol Cell. 2002 Jun;13(6):1977-2000 - PubMed
  7. Am J Med Genet A. 2017 Nov;173(11):3022-3028 - PubMed
  8. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18061-6 - PubMed
  9. Clin Cancer Res. 2014 Dec 15;20(24):6582-92 - PubMed
  10. Nature. 2020 Oct;586(7831):763-768 - PubMed
  11. Cell. 2017 Feb 23;168(5):801-816.e13 - PubMed
  12. Cancer Cell. 2002 May;1(4):299-305 - PubMed
  13. Clin Cancer Res. 2015 Mar 15;21(6):1447-56 - PubMed
  14. Cancer Cell. 2014 Apr 14;25(4):442-54 - PubMed
  15. Nat Commun. 2020 Oct 21;11(1):5327 - PubMed
  16. Science. 2020 Mar 27;367(6485):1449-1454 - PubMed
  17. Blood. 2015 Jan 22;125(4):629-38 - PubMed
  18. Stem Cell Reports. 2015 Nov 10;5(5):843-855 - PubMed
  19. J Clin Invest. 2015 May;125(5):1839-56 - PubMed
  20. Nat Rev Genet. 2009 Nov;10(11):805-11 - PubMed
  21. Science. 2018 Nov 23;362(6417):911-917 - PubMed
  22. Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3123-3134 - PubMed
  23. Nat Genet. 2014 Apr;46(4):385-8 - PubMed
  24. Science. 2015 May 22;348(6237):880-6 - PubMed
  25. J Clin Invest. 2017 Oct 2;127(10):3657-3674 - PubMed
  26. Cell Stem Cell. 2016 Oct 6;19(4):491-501 - PubMed
  27. J Clin Invest. 1988 May;81(5):1537-44 - PubMed
  28. Nat Commun. 2018 Feb 8;9(1):577 - PubMed
  29. Nature. 2019 Oct;574(7779):538-542 - PubMed
  30. J Invest Dermatol. 2012 Dec;132(12):2681-90 - PubMed
  31. Gene. 2017 Mar 10;604:41-47 - PubMed
  32. J Cutan Pathol. 2010 Sep;37(9):966-72 - PubMed
  33. J Invest Dermatol. 2003 Apr;120(4):501-11 - PubMed
  34. J Med Genet. 2017 Dec;54(12):805-808 - PubMed
  35. Nature. 2010 Jan 28;463(7280):563-7 - PubMed
  36. Cell. 1999 Oct 29;99(3):247-57 - PubMed
  37. Genome Biol. 2015 Apr 16;16:80 - PubMed
  38. Cell Syst. 2016 Sep 28;3(3):221-237.e9 - PubMed
  39. Am J Med Genet A. 2017 Jan;173(1):250-253 - PubMed
  40. Cell Rep. 2018 Jul 31;24(5):1105-1112.e5 - PubMed
  41. Nature. 2020 Nov;587(7834):477-482 - PubMed
  42. Cell Stem Cell. 2018 Oct 4;23(4):487-500.e6 - PubMed
  43. Oncol Rep. 2008 Nov;20(5):1021-7 - PubMed
  44. Nature. 2020 Feb;578(7794):266-272 - PubMed
  45. Nature. 2019 Jan;565(7739):312-317 - PubMed
  46. Am J Med Genet A. 2019 Jul;179(7):1357-1361 - PubMed
  47. Elife. 2017 Apr 20;6: - PubMed
  48. Nat Med. 2014 Dec;20(12):1472-8 - PubMed
  49. Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7526-E7535 - PubMed
  50. N Engl J Med. 2015 Mar 12;372(11):1071-2 - PubMed
  51. Nature. 2014 Mar 20;507(7492):371-5 - PubMed
  52. Nat Rev Mol Cell Biol. 2009 Mar;10(3):207-17 - PubMed
  53. Nat Rev Cancer. 2013 Jul;13(7):497-510 - PubMed
  54. Cancer Res. 2018 Apr 15;78(8):1935-1947 - PubMed
  55. N Engl J Med. 2014 Dec 25;371(26):2488-98 - PubMed
  56. Blood. 2015 Jan 22;125(4):619-28 - PubMed
  57. Development. 2000 Nov;127(22):4775-85 - PubMed
  58. Mol Cell Biol. 2003 Aug;23(16):5594-605 - PubMed
  59. Nat Genet. 2016 Apr;48(4):398-406 - PubMed

Publication Types

Grant support