Display options
Share it on

Front Plant Sci. 2021 Mar 16;12:602598. doi: 10.3389/fpls.2021.602598. eCollection 2021.

Comparative Analysis of Plastid Genomes in the Non-photosynthetic Genus .

Frontiers in plant science

Sophia V Yudina, Mikhail I Schelkunov, Lars Nauheimer, Darren Crayn, Sahut Chantanaorrapint, Michal Hroneš, Michal Sochor, Martin Dančák, Shek-Shing Mar, Hong Truong Luu, Maxim S Nuraliev, Maria D Logacheva

Affiliations

  1. Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
  2. Institute for Information Transmission Problems, Moscow, Russia.
  3. Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam.
  4. Skolkovo Institute of Science and Technology, Moscow, Russia.
  5. Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia.
  6. Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand.
  7. Faculty of Science, Palacký University Olomouc, Olomouc, Czechia.
  8. Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Olomouc, Czechia.
  9. Ying Wa College, Hong Kong, China.
  10. Southern Institute of Ecology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.

PMID: 33796122 PMCID: PMC8009136 DOI: 10.3389/fpls.2021.602598

Abstract

Heterotrophic plants provide intriguing examples of reductive evolution. This is especially evident in the reduction of their plastid genomes, which can potentially proceed toward complete genome loss. Several milestones at the beginning of this path of degradation have been described; however, little is known about the latest stages of plastome reduction. Here we analyze a diversity of plastid genomes in a set of closely related non-photosynthetic plants. We demonstrate how a gradual loss of genes shapes the miniaturized plastomes of these plants. The subject of our study, the genus

Copyright © 2021 Yudina, Schelkunov, Nauheimer, Crayn, Chantanaorrapint, Hroneš, Sochor, Dančák, Mar, Luu, Nuraliev and Logacheva.

Keywords: Thismia; genome reductive evolution; mycoheterotrophy; non-photosynthetic plants; plastid genome

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Genome Biol Evol. 2018 Mar 1;10(3):976-981 - PubMed
  2. Mol Biol Evol. 2013 Apr;30(4):772-80 - PubMed
  3. Am J Bot. 2012 Sep;99(9):1513-23 - PubMed
  4. Evolution. 2012 Aug;66(8):2369-83 - PubMed
  5. Genome Biol Evol. 2019 Sep 1;11(9):2457-2467 - PubMed
  6. PLoS Genet. 2009 Jan;5(1):e1000323 - PubMed
  7. BMC Plant Biol. 2019 Oct 25;19(1):448 - PubMed
  8. Nucleic Acids Res. 2017 Jul 3;45(W1):W6-W11 - PubMed
  9. Mol Biol Evol. 2000 Apr;17(4):540-52 - PubMed
  10. Mol Biol Evol. 2019 Sep 1;36(9):1884-1901 - PubMed
  11. BMC Genomics. 2012 Jan 03;13:1 - PubMed
  12. Genetics. 2020 Apr;214(4):809-823 - PubMed
  13. Methods Mol Biol. 2019;1962:1-14 - PubMed
  14. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  15. Bioinformatics. 2014 May 1;30(9):1312-3 - PubMed
  16. Ann Bot. 2019 Sep 24;124(2):331-342 - PubMed
  17. PeerJ. 2020 Jun 19;8:e9309 - PubMed
  18. Mol Biol Evol. 2007 Aug;24(8):1586-91 - PubMed
  19. Bioinformatics. 2019 Aug 1;35(15):2562-2568 - PubMed
  20. Genome Biol Evol. 2015 Jan 28;7(4):1179-91 - PubMed
  21. New Phytol. 2018 May;218(3):1192-1204 - PubMed
  22. Am J Bot. 2018 Nov;105(11):1888-1910 - PubMed
  23. PLoS One. 2016 Mar 02;11(3):e0150718 - PubMed
  24. BMC Evol Biol. 2015 Sep 29;15:210 - PubMed
  25. Am J Bot. 2016 Apr;103(4):692-708 - PubMed
  26. New Phytol. 2017 Apr;214(1):48-55 - PubMed
  27. Am J Bot. 2018 Mar;105(3):480-494 - PubMed
  28. Sci Rep. 2018 Sep 11;8(1):13568 - PubMed
  29. BMC Bioinformatics. 2012 Mar 23;13:48 - PubMed
  30. Mol Phylogenet Evol. 2019 Jun;135:193-202 - PubMed
  31. Plant Physiol. 1998 Sep;118(1):9-17 - PubMed
  32. Sci Rep. 2016 Jul 25;6:30042 - PubMed
  33. Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):934-943 - PubMed
  34. Bioinformatics. 2004 Nov 22;20(17):3252-5 - PubMed
  35. Syst Biol. 2012 May;61(3):539-42 - PubMed
  36. Science. 2010 Jan 1;327(5961):92-4 - PubMed
  37. Curr Genet. 2007 Nov;52(5-6):267-74 - PubMed
  38. Nature. 2008 Nov 6;456(7218):53-9 - PubMed
  39. Genome Biol Evol. 2015 Dec 12;8(1):189-201 - PubMed
  40. Trends Plant Sci. 2006 Feb;11(2):101-8 - PubMed
  41. Mol Biol Evol. 2020 May 1;37(5):1530-1534 - PubMed
  42. BMC Genomics. 2018 Aug 9;19(1):602 - PubMed
  43. Mol Biol Evol. 2007 Sep;24(9):2040-8 - PubMed
  44. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9045-50 - PubMed
  45. Mol Biol Evol. 2018 Feb 1;35(2):518-522 - PubMed
  46. Mol Biol Evol. 2014 Dec;31(12):3095-112 - PubMed
  47. Plant Physiol. 2013 Apr;161(4):1918-29 - PubMed
  48. PeerJ. 2019 Sep 12;7:e7500 - PubMed
  49. Plant Divers. 2018 Jul 18;40(5):232-237 - PubMed
  50. BMC Plant Biol. 2020 May 8;20(1):199 - PubMed
  51. PeerJ. 2019 Oct 8;7:e7787 - PubMed
  52. Nat Commun. 2018 Apr 24;9(1):1615 - PubMed
  53. Genome Biol Evol. 2015 Jul 13;7(8):2220-36 - PubMed
  54. Am J Bot. 2016 Jun;103(6):1129-37 - PubMed
  55. Proc Natl Acad Sci U S A. 1988 Jan;85(2):372-6 - PubMed
  56. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W7-13 - PubMed
  57. BMC Bioinformatics. 2009 Dec 15;10:421 - PubMed
  58. Genome Biol Evol. 2019 Jun 1;11(6):1691-1705 - PubMed
  59. Nucleic Acids Res. 2007;35(9):3100-8 - PubMed

Publication Types