Display options
Share it on

J Hum Genet. 2021 Oct;66(10):1009-1018. doi: 10.1038/s10038-021-00922-0. Epub 2021 Apr 21.

Wolfram-like syndrome with bicuspid aortic valve due to a homozygous missense variant in CDK13.

Journal of human genetics

Anushree Acharya, Syed Irfan Raza, Muhammad Zeeshan Anwar, Thashi Bharadwaj, Khurram Liaqat, Muhammad Akram Shahzad Khokhar, Jenna L Everard, Abdul Nasir, Deborah A Nickerson, Michael J Bamshad, Muhammad Ansar, Isabelle Schrauwen, Wasim Ahmad, Suzanne M Leal

Affiliations

  1. Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA.
  2. Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
  3. Department of Biochemistry, HBS Medical and Dental College, Islamabad, Pakistan.
  4. Department of Biochemistry, CMH Kharian Medical College, Punjab, Pakistan.
  5. Major Shabbir Sharif Shaheed Hospital, THQ Level, Kunjah, Gujrat, Punjab, Pakistan.
  6. Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.
  7. Department of Genome Sciences, University of Washington, Seattle, WA, USA.
  8. Department of Pediatrics, University of Washington, Seattle, WA, USA.
  9. Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA. [email protected].
  10. Taub Institute for Alzheimer's Disease and The Aging Brain, Columbia University Medical Center, New York, NY, USA. [email protected].

PMID: 33879837 PMCID: PMC8472924 DOI: 10.1038/s10038-021-00922-0

Abstract

BACKGROUND: Wolfram syndrome (WFS) is characterized by deafness, diabetes mellitus, and diabetes insipidus along with optic atrophy. WFS has an autosomal recessive mode of inheritance and is due to variants in WFS1 and CISD2.

METHODS: We evaluated the underlying molecular etiology of three affected members of a consanguineous family with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities via exome sequencing approach. We correlated clinical and imaging data with the genetic findings and their associated phenotypes.

RESULTS: We identified a homozygous missense variant p.(Asn1097Lys) in CDK13, a gene previously associated with autosomal dominant congenital heart defects, dysmorphic facial features, clinodactyly, gastrointestinal tract abnormalities, intellectual developmental disorder, and seizures with variable phenotypic features.

CONCLUSION: We report a homozygous variant in CDK13 and suggest that this gene causes an autosomal recessive disorder with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities.

© 2021. The Author(s).

References

  1. J Transl Med. 2019 Jul 23;17(1):238 - PubMed
  2. J Med Genet. 2018 Jan;55(1):28-38 - PubMed
  3. Database (Oxford). 2015 Jul 24;2015:bav071 - PubMed
  4. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 - PubMed
  5. Nat Genet. 2016 Sep;48(9):1060-5 - PubMed
  6. Science. 2020 Sep 11;369(6509):1318-1330 - PubMed
  7. Nature. 2016 Sep 22;537(7621):508-514 - PubMed
  8. Diabet Med. 2008 Jun;25(6):657-61 - PubMed
  9. Am J Hum Genet. 2007 Sep;81(3):559-75 - PubMed
  10. Hum Mutat. 2016 Mar;37(3):235-41 - PubMed
  11. Am J Hum Genet. 2017 Sep 7;101(3):478-484 - PubMed
  12. Mol Cell Proteomics. 2014 Feb;13(2):397-406 - PubMed
  13. J Neurodev Disord. 2019 Jun 25;11(1):11 - PubMed
  14. Hum Mol Genet. 2001 Oct 15;10(22):2509-14 - PubMed
  15. PLoS Biol. 2013;11(6):e1001581 - PubMed
  16. Bioinformatics. 2011 Nov 15;27(22):3216-7 - PubMed
  17. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W593-9 - PubMed
  18. Genome Biol. 2009;10(3):R25 - PubMed
  19. J Clin Endocrinol Metab. 2004 Apr;89(4):1656-61 - PubMed
  20. PLoS One. 2012;7(1):e29150 - PubMed
  21. Genes Dev. 2011 Oct 15;25(20):2158-72 - PubMed
  22. Nat Commun. 2020 May 13;11(1):2389 - PubMed
  23. J Neurosci. 2015 Apr 22;35(16):6366-80 - PubMed
  24. Nucleic Acids Res. 2014 Dec 16;42(22):13534-44 - PubMed
  25. Clin Genet. 2018 May;93(5):1000-1007 - PubMed
  26. Genome Res. 2010 Sep;20(9):1297-303 - PubMed
  27. Nature. 2020 May;581(7809):434-443 - PubMed
  28. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):579-83 - PubMed
  29. Orphanet J Rare Dis. 2020 Aug 6;15(1):203 - PubMed
  30. Nat Genet. 1998 Oct;20(2):143-8 - PubMed
  31. Am J Hum Genet. 2006 Jun;78(6):922-35 - PubMed
  32. Nucleic Acids Res. 2010 Sep;38(16):e164 - PubMed
  33. BMC Med Genet. 2014 Jul 24;15:88 - PubMed
  34. Am J Hum Genet. 2007 Oct;81(4):673-83 - PubMed
  35. Am J Med Genet A. 2011 Jun;155A(6):1298-313 - PubMed
  36. Fly (Austin). 2012 Apr-Jun;6(2):80-92 - PubMed
  37. Genome Res. 2012 Aug;22(8):1525-32 - PubMed
  38. Nat Biotechnol. 2011 Jan;29(1):24-6 - PubMed
  39. Cold Spring Harb Protoc. 2017 Apr 3;2017(4):pdb.prot093450 - PubMed
  40. Nat Methods. 2021 Aug;18(8):843-844 - PubMed
  41. Genome Med. 2017 Aug 14;9(1):73 - PubMed
  42. Hum Mol Genet. 2001 Oct 15;10(22):2501-8 - PubMed
  43. Mol Cell Biol. 2015 Mar;35(6):928-38 - PubMed
  44. Nucleic Acids Res. 2014 Jan;42(Database issue):D986-92 - PubMed
  45. J Neurosci. 2011 Jul 27;31(30):10903-18 - PubMed
  46. Front Cell Dev Biol. 2019 Aug 07;7:155 - PubMed
  47. Arch Otolaryngol Head Neck Surg. 2003 Apr;129(4):411-20 - PubMed
  48. Clin Genet. 2011 Feb;79(2):103-17 - PubMed

Publication Types

Grant support