Display options
Share it on

Mucosal Immunol. 2021 Sep;14(5):1017-1037. doi: 10.1038/s41385-021-00398-3. Epub 2021 Apr 15.

Intestinal immunoregulation: lessons from human mendelian diseases.

Mucosal immunology

Fabienne Charbit-Henrion, Marianna Parlato, Georgia Malamut, Frank Ruemmele, Nadine Cerf-Bensussan

Affiliations

  1. Université de Paris, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France.
  2. Université de Paris, Department of Molecular Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France.
  3. Université de Paris, Department of Gastroenterology, AP-HP, Hôpital Cochin, Paris, France.
  4. Université de Paris, Department of Pediatric Gastroenterology, AP-HP, Hôpital Necker-Enfants Malades, Paris, France.
  5. Université de Paris, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France. [email protected].

PMID: 33859369 DOI: 10.1038/s41385-021-00398-3

Abstract

The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.

© 2021. The Author(s), under exclusive licence to Society for Mucosal Immunology.

References

  1. Mizoguchi, A., Takeuchi, T., Himuro, H., Okada, T. & Mizoguchi, E. Genetically engineered mouse models for studying inflammatory bowel disease. J. Pathol. 238, 205–219 (2016). - PubMed
  2. Kiesler, P., Fuss, I. J. & Strober, W. Experimental models of inflammatory bowel diseases. Cell. Mol. Gastroenterol. Hepatol. 1, 154–170 (2015). - PubMed
  3. Fox, J. G., Ge, Z., Whary, M. T., Erdman, S. E. & Horwitz, B. H. Helicobacter hepaticus infection in mice: models for understanding lower bowel inflammation and cancer. Mucosal Immunol. 4, 22–30 (2011). - PubMed
  4. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012). - PubMed
  5. Posovszky, C. Congenital intestinal diarrhoeal diseases: a diagnostic and therapeutic challenge. Best Pract. Res. Clin. Gastroenterol. 30, 187–211 (2016). - PubMed
  6. Thiagarajah, J. R. et al. Advances in evaluation of chronic diarrhea in infants. Gastroenterology 154, 2045–2059.e6 (2018). - PubMed
  7. Wedenoja, S. et al. Update on SLC26A3 mutations in congenital chloride diarrhea. Hum. Mutat. 32, 715–722 (2011). - PubMed
  8. Asano, K. et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat. Genet. 41, 1325–1329 (2009). - PubMed
  9. Janecke, A. R., Heinz-Erian, P. & Müller, T. Congenital sodium diarrhea. J. Pediatr. Gastroenterol. Nutr. 63, 170–176 (2016). - PubMed
  10. Fiskerstrand, T. et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N. Engl. J. Med. 366, 1586–1595 (2012). - PubMed
  11. Müller, T. et al. Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C. Gut 65, 1306–1313 (2016). - PubMed
  12. Kuhn, M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol. Rev. 96, 751–804 (2016). - PubMed
  13. Romi, H. et al. Meconium ileus caused by mutations in GUCY2C, encoding the CFTR-activating guanylate cyclase 2C. Am. J. Hum. Genet. 90, 893–899 (2012). - PubMed
  14. Steinbrecher, K. A. et al. Murine guanylate cyclase C regulates colonic injury and inflammation. J. Immunol. 186, 7205–7214 (2011). - PubMed
  15. Larmonier, C. B. et al. Reduced colonic microbial diversity is associated with colitis in NHE3-deficient mice. Am. J. Physiol. 305, 667–677 (2013). - PubMed
  16. Davidson, G. P., Cutz, E., Hamilton, J. R. & Gall, D. G. Familial enteropathy: a syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology 75, 783–790 (1978). - PubMed
  17. Charbit-Henrion, F. et al. Diagnostic yield of next-generation sequencing in very early-onset inflammatory bowel diseases: a multicentre study. J. Crohns Colitis 12, 1104–1112 (2018). - PubMed
  18. Müller, T. et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat. Genet. 40, 1163–1165 (2008). - PubMed
  19. Wiegerinck, C. L. et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 147, 65–68.e10 (2014). - PubMed
  20. Vogel, G. F. et al. Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations. JCI Insight 2, 1–14 (2017). - PubMed
  21. Dhekne, H. S. et al. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: a mutation update. Hum. Mutat. 39, 333–344 (2018). - PubMed
  22. Schneeberger, K., Roth, S., Nieuwenhuis, E. E. S. & Middendorp, S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis. Model. Mech. 11 (2018). - PubMed
  23. Kravtsov, D. V. et al. Identification of intestinal ion transport defects in microvillus inclusion disease. Am. J. Physiol. 311, G142–G155 (2016). - PubMed
  24. Engevik, A. C. et al. Loss of MYO5B leads to reductions in Na - PubMed
  25. Engevik, A. C. et al. Editing myosin VB gene to create porcine model of microvillus inclusion disease, with microvillus-lined inclusions and alterations in sodium transporters. Gastroenterology 158, 2236–2249.e9 (2020). - PubMed
  26. Côte, M. et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J. Clin. Investig. 119, 3765–3773 (2009). - PubMed
  27. Lehmberg, K., Moshous, D. & Booth, C. Haematopoietic stem cell transplantation for primary haemophagocytic lymphohistiocytosis. Front. Pediatr. 7, 435 (2019). - PubMed
  28. Engevik, A. C. et al. Loss of myosin Vb promotes apical bulk endocytosis in neonatal enterocytes. J. Cell Biol. 218, 3647–3662 (2019). - PubMed
  29. Mosa, M. H. et al. Dynamic formation of microvillus inclusions during enterocyte differentiation in Munc18-2-deficient intestinal organoids. Cell. Mol. Gastroenterol. Hepatol. 6, 477–493.e1 (2018). - PubMed
  30. Kaji, I. et al. Lysophosphatidic acid increases maturation of brush borders and SGLT1 activity in MYO5B-deficient mice, a model of microvillus inclusion disease. Gastroenterology 159, 1390–1405.e20 (2020). - PubMed
  31. Goulet, O., Salomon, J., Ruemmele, F., Serres, N. P.-M & Brousse, N. Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J. Rare Dis. 2, 20 (2007). - PubMed
  32. Sivagnanam, M. et al. Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology 135, 429–437 (2008). - PubMed
  33. Heinz-Erian, P. et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am. J. Hum. Genet. 13, 188–196 (2009). - PubMed
  34. Mueller, J. L., McGeough, M. D., Peña, C. A. & Sivagnanam, M. Functional consequences of EpCam mutation in mice and men. Am. J. Physiol. Liver Physiol. 306, G278–G288 (2014). - PubMed
  35. Maghzal, N., Kayali, H. A., Rohani, N., Kajava, A. V. & Fagotto, F. EpCAM controls actomyosin contractility and cell adhesion by direct inhibition of PKC. Dev. Cell 27, 263–277 (2013). - PubMed
  36. Salomon, J. et al. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat. Commun. 8, 13998 (2017). - PubMed
  37. Ladwein, M. et al. The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Exp. Cell Res. 309, 345–357 (2005). - PubMed
  38. Ding, L. et al. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology 142, 305–315 (2012). - PubMed
  39. Wu, C. J., Feng, X., Lu, M., Morimura, S. & Udey, M. C. Matriptase-mediated cleavage of EpCAM destabilizes claudins and dysregulates intestinal epithelial homeostasis. J. Clin. Investig. 127, 623–634 (2017). - PubMed
  40. Canani, R. B., Castaldo, G., Bacchetta, R., Martín, M. G. & Goulet, O. Congenital diarrhoeal disorders: advances in this evolving web of inherited enteropathies. Nat. Rev. Gastroenterol. Hepatol. 12, 293–302 (2015). - PubMed
  41. O’Connell, A. E. et al. Neonatal-onset chronic diarrhea caused by homozygous nonsense WNT2B mutations. Am. J. Hum. Genet. 103, 131–137 (2018). - PubMed
  42. Clevers, H., Loh, K. M. & Nusse, R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014). - PubMed
  43. Farin, H. F., Van Es, J. H., & Clevers, H. Redundant sources of wnt regulate intestinal stem cells and promote formation of paneth cells. Gastroenterology 143, 1518–1529.e7 (2012). - PubMed
  44. Goss, A. M. et al. Wnt2/2b and β-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev. Cell 17, 290–298 (2009). - PubMed
  45. Fischer, A. & Rausell, A. Primary immunodeficiencies suggest redundancy within the human immune system. Sci. Immunol. 1, eaah5861 (2016). - PubMed
  46. Aviello, G. & Knaus, U. G. NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol. 11, 1011–1023 (2018). - PubMed
  47. Hayes, P. et al. Defects in NADPH oxidase genes and in very early onset inflammatory bowel disease. Cell. Mol. Gastroenterol. Hepatol. 1, 489–502 (2015). - PubMed
  48. Schwerd, T. et al. NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol. 11, 562–574 (2018). - PubMed
  49. Khoshnevisan, R. et al. NOX1 regulates collective and planktonic cell migration: insights from patients with pediatric-onset IBD and NOX1 deficiency. Inflamm. Bowel Dis. 26, 1166–1176 (2020). - PubMed
  50. Parlato, M. et al. First identification of biallelic inherited DUOX2 inactivating mutations as a cause of very early onset inflammatory bowel disease. Gastroenterology 153, 609–611.e3 (2017). - PubMed
  51. Ha, E.-M., Oh, C.-T., Bae, Y. S. & Lee, W.-J. A direct role for dual oxidase in drosophila gut immunity. Science 310, 847–850 (2005). - PubMed
  52. Grasberger, H. et al. Increased expression of DUOX2 is an epithelial response to mucosal dysbiosis required for immune homeostasis in mouse intestine. Gastroenterology 149, 1849–1859 (2015). - PubMed
  53. Pircalabioru, G. et al. Defensive mutualism rescues NADPH oxidase inactivation in gut infection. Cell Host Microbe 19, 651–663 (2016). - PubMed
  54. Tangye, S. G. et al. Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee. J. Clin. Immunol. 40, 24–64 (2020). - PubMed
  55. Parlato, M. et al. Human ALPI deficiency causes inflammatory bowel disease and highlights a key mechanism of gut homeostasis. EMBO Mol. Med. 10, 12 (2018). - PubMed
  56. Schromm, A. B. et al. The charge of endotoxin molecules influences their conformation and IL-6-inducing capacity. J. Immunol. 161, 5464–71 (1998). - PubMed
  57. Lallès, J.-P. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr. Rev. 72, 82–94 (2014). - PubMed
  58. Bilski, J. et al. The role of intestinal alkaline phosphatase in inflammatory disorders of gastrointestinal tract. Mediators Inflamm. 2017, 1–9 (2017). - PubMed
  59. Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382 (2007). - PubMed
  60. Yang, W. H. et al. Recurrent infection progressively disables host protection against intestinal inflammation. Science 358, eaao5610 (2017). - PubMed
  61. Avitzur, Y. et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 146, 1028–1039 (2014). - PubMed
  62. Bigorgne, A. E. et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J. Clin. Investig. 124, 328–337 (2014). - PubMed
  63. Lemoine, R. et al. Immune deficiency-related enteropathy-lymphocytopenia-alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency. J. Allergy Clin. Immunol. 134, 1354–1364.e6 (2014). - PubMed
  64. Jardine, S. et al. Drug screen identifies leflunomide for treatment of inflammatory bowel disease caused by TTC7A deficiency. Gastroenterology 158, 1000–1015 (2020). - PubMed
  65. Girault, D. et al. Intractable infant diarrhea associated with phenotypic abnormalities and immunodeficiency. J. Pediatr. 125, 36–42 (1994). - PubMed
  66. Bourgeois, P. et al. Tricho-hepato-enteric syndrome mutation update: mutations spectrum of TTC37 and SKIV2L, clinical analysis and future prospects. Hum. Mutat. 39, 774–789 (2018). - PubMed
  67. Vély, F. et al. Combined immunodeficiency in patients with trichohepatoenteric syndrome. Front. Immunol. 9, 1036 (2018). - PubMed
  68. Eckard, S. C. et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 15, 839–845 (2014). - PubMed
  69. Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395, 297–300 (1998). - PubMed
  70. Zhang, Q., Lenardo, M. J. & Baltimore, D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168, 37–57 (2017). - PubMed
  71. Miot, C. et al. Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood 130, 1456–1467 (2017). - PubMed
  72. Hanson, E. P. et al. Hypomorphic nuclear factor-κB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J. Allergy Clin. Immunol. 122, 1169–1193 (2008). - PubMed
  73. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007). - PubMed
  74. Li, Y. et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 116, 970–975 (2019). - PubMed
  75. Lehle, A. S. et al. Intestinal inflammation and dysregulated immunity in patients with inherited caspase-8 deficiency. Gastroenterology 156, 275–278 (2019). - PubMed
  76. Günther, C. et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011). - PubMed
  77. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–94 (2014). - PubMed
  78. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012). - PubMed
  79. Roos, D. Chronic granulomatous disease. Br. Med. Bull. 118, 50–63 (2016). - PubMed
  80. Arnold, D. E. & Heimall, J. R. A review of chronic granulomatous disease. Adv. Ther. 34, 2543–2557 (2017). - PubMed
  81. Van De Geer, A. et al. Inherited p40 phox deficiency differs from classic chronic granulomatous disease. J. Clin. Investig. 128, 3957–3975 (2018). - PubMed
  82. Reeves, E. P. et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416, 291–297 (2002). - PubMed
  83. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004). - PubMed
  84. Kenny, E. F. et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife 6, e24437 (2017). - PubMed
  85. Dhillon, S. S. et al. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology 147, 680–689.e2 (2014). - PubMed
  86. Kelkka, T. et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxid. Redox Signal. 21, 2231–2245 (2014). - PubMed
  87. Huang, J. et al. Activation of antibacterial autophagy by NADPH oxidases. Proc. Natl. Acad. Sci. 106, 6226–6231 (2009). - PubMed
  88. Luca, A et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc. Natl. Acad. Sci. 111, 3526–3531 (2014). - PubMed
  89. Harris, J. et al. Autophagy and inflammasomes. Mol. Immunol. 86, 10–15 (2017). - PubMed
  90. Hahn, K. J. et al. Treatment with anakinra, a recombinant IL-1 receptor antagonist, unlikely to induce lasting remission in patients with CGD colitis. Am. J. Gastroenterol. 110, 938–939 (2015). - PubMed
  91. Hugot, J.-P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603 (2001). - PubMed
  92. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606 (2001). - PubMed
  93. Mukherjee, T. et al. NOD1 and NOD2 in inflammation, immunity and disease. Arch. Biochem. Biophys. 670, 69–81 (2019). - PubMed
  94. Latour, S. & Aguilar, C. XIAP deficiency syndrome in humans. Semin. Cell Dev. Biol. 39, 115–123 (2015). - PubMed
  95. Aguilar, C. et al. Characterization of Crohn disease in X-linked inhibitor of apoptosis–deficient male patients and female symptomatic carriers. J. Allergy Clin. Immunol. 134, 1131–1141.e9 (2014). - PubMed
  96. Krieg, A. et al. XIAP mediates NOD signaling via interaction with RIP2. Proc. Natl. Acad. Sci. 106, 14524–14529 (2009). - PubMed
  97. Damgaard, R. B. et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46, 746–758 (2012). - PubMed
  98. Damgaard, R. B. et al. Disease‐causing mutations in the XIAP BIR2 domain impair NOD 2‐dependent immune signalling. EMBO Mol. Med. 5, 1278–1295 (2013). - PubMed
  99. Schwerd, T. et al. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease. Gut 66, 1060–1073 (2017). - PubMed
  100. Yabal, M. et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep. 7, 1796–1808 (2014). - PubMed
  101. Lawlor, K. E. et al. XIAP loss triggers RIPK3- and caspase-8-driven IL-1β activation and cell death as a consequence of TLR-MyD88-induced cIAP1-TRAF2 degradation. Cell Rep. 20, 668–682 (2017). - PubMed
  102. Li, Q. et al. Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology 150, 1196–1207 (2016). - PubMed
  103. Takagi, M. et al. Haploinsufficiency of TNFAIP3 (A20) by germline mutation is involved in autoimmune lymphoproliferative syndrome. J. Allergy Clin. Immunol. 139, 1914–1922 (2017). - PubMed
  104. Duncan, C. J. A. et al. Early-onset autoimmune disease due to a heterozygous loss-of-function mutation in TNFAIP3 (A20). Ann. Rheum. Dis. 77, 783–786 (2018). - PubMed
  105. Zheng, C. et al. Infantile onset intractable inflammatory bowel disease due to novel heterozygous mutations in TNFAIP3 (A20). Inflamm. Bowel Dis. 24, 2613–2620 (2018). - PubMed
  106. Martens, A. & van Loo, G. A20 at the crossroads of cell death, inflammation, and autoimmunity. Cold Spring Harb. Perspect. Biol. 12, a036418 (2020). - PubMed
  107. Polykratis, A. et al. A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nat. Cell Biol. 21, 731–742 (2019). - PubMed
  108. Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67–73 (2016). - PubMed
  109. Zhou, Q. et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc. Natl. Acad. Sci. 113, 10127–10132 (2016). - PubMed
  110. Damgaard, R. B. et al. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166, 1215–1230.e20 (2016). - PubMed
  111. Torre-Minguela, C., de, Castillo, P. M. & Pelegrín, P. The NLRP3 and pyrin inflammasomes: Implications in the pathophysiology of autoinflammatory diseases. Front. Immunol. 8, 43 (2017). - PubMed
  112. Romberg, N. et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46, 1135–1139 (2014). - PubMed
  113. Canna, S. W. et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J. Allergy Clin. Immunol. 139, 1698–1701 (2017). - PubMed
  114. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016). - PubMed
  115. Rauch, I. et al. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46, 649–659 (2017). - PubMed
  116. Romberg, N., Vogel, T. P. & Canna, S. W. NLRC4 inflammasomopathies. Curr. Opin. Allergy Clin. Immunol. 17, 398–404 (2017). - PubMed
  117. Mulders-Manders, C. M. & Simon, A. Hyper-IgD syndrome/mevalonate kinase deficiency: what is new? Semin. Immunopathol. 37, 371–376 (2015). - PubMed
  118. Levy, M. et al. Severe early-onset colitis revealing mevalonate kinase deficiency. Pediatrics 132, e779–e783 (2013). - PubMed
  119. Akula, M. K. et al. Control of the innate immune response by the mevalonate pathway. Nat. Immunol. 17, 922–929 (2016). - PubMed
  120. Park, Y. H., Wood, G., Kastner, D. L. & Chae, J. J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016). - PubMed
  121. Lachmann, H. J. Periodic fever syndromes. Best Pract. Res. Clin. Rheumatol. 31, 596–609 (2017). - PubMed
  122. Cuchet-Lourenço, D. et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361, 810–813 (2018). - PubMed
  123. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019). - PubMed
  124. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020). - PubMed
  125. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020). - PubMed
  126. Fischer, U., Stroh, C. & Schulze-Osthoff, K. Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene 25, 152–159 (2006). - PubMed
  127. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009). - PubMed
  128. Glocker, E.-O. et al. Infant colitis—it’s in the genes. Lancet 376, 1272 (2010). - PubMed
  129. Shouval, D. S. et al. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv. Immunol. 122, 177–210 (2014). - PubMed
  130. Zheng, C. et al. Phenotypic characterization of very early-onset inflammatory bowel disease with interleukin-10 signaling deficiency: based on a large cohort study. Inflamm. Bowel Dis. 25, 756–766 (2019). - PubMed
  131. Charbit-Henrion, F. et al. Copy number variations and founder effect underlying complete IL-10Rβ deficiency in Portuguese kindreds. PLoS ONE 13, e0205826 (2018). - PubMed
  132. Engelhardt, K. R. et al. Clinical outcome in IL-10– and IL-10 receptor–deficient patients with or without hematopoietic stem cell transplantation. J. Allergy Clin. Immunol. 131, 825–830.e9 (2013). - PubMed
  133. Dudakov, J. A., Hanash, A. M. & Brink, M. R. M.van den Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015). - PubMed
  134. Ingle, H. et al. Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ. Nat. Microbiol. 4, 1120–1128 (2019). - PubMed
  135. Neven, B. et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood 122, 3713–3722 (2013). - PubMed
  136. Kühn, R., Löhler, J., Rennick, D., Rajewsky, K. & Müller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993). - PubMed
  137. Kim, S. C. et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology 128, 891–906 (2005). - PubMed
  138. Roers, A. et al. T cell–specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J. Exp. Med. 200, 1289–1297 (2004). - PubMed
  139. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008). - PubMed
  140. Li, B., Alli, R., Vogel, P. & Geiger, T. L. IL-10 modulates DSS-induced colitis through a macrophage–ROS–NO axis. Mucosal Immunol. 7, 869–878 (2014). - PubMed
  141. Parlato, M. et al. Loss-of-function mutation in PTPN2 causes aberrant activation of JAK signaling via STAT and very early onset intestinal inflammation. Gastroenterology 159, 1968–1971.e4 (2020). - PubMed
  142. Shouval, D. S. et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40, 706–719 (2014). - PubMed
  143. Begue, B. et al. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease. Am. J. Gastroenterol. 106, 1544–1555 (2011). - PubMed
  144. Wu, P., Chen, S., Wu, B., Chen, J. & Lv, G. A TYK2 gene mutation c.2395G>A leads to TYK2 deficiency: a case report and literature review. Front. Pediatr. 8, 253 (2020). - PubMed
  145. Zhang, Q., Boisson, B., Béziat, V., Puel, A. & Casanova, J.-L. Human hyper-IgE syndrome: singular or plural? Mamm. Genome 29, 603–617 (2018). - PubMed
  146. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017). - PubMed
  147. Shouval, D. S. et al. Interleukin 1β mediates intestinal inflammation in mice and patients with interleukin 10 receptor deficiency. Gastroenterology 151, 1100–1104 (2016). - PubMed
  148. Aschenbrenner, D. et al. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut gutnl-2020-321-371 (2020). - PubMed
  149. Biswas, A. et al. WASP-mediated regulation of anti-inflammatory macrophages is IL-10 dependent and is critical for intestinal homeostasis. Nat. Commun. 9, 1779 (2018). - PubMed
  150. Su, Y. & Zhao, H. Predisposition of inflammatory bowel disease is influenced by IL-8, IL-10, and IL-18 polymorphisms: a meta-analysis. Int. Arch. Allergy Immunol. 181, 799–806 (2020). - PubMed
  151. Kelly, A., Houston, S. A., Sherwood, E., Casulli, J. & Travis, M. A. Regulation of innate and adaptive immunity by TGFβ. Adv. Immunol. 134, 137–233 (2017). - PubMed
  152. Batlle, E. & Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019). - PubMed
  153. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992). - PubMed
  154. Chen, W. & Dijke, P. ten Immunoregulation by members of the TGFβ superfamily. Nat. Rev. Immunol. 16, 723–740 (2016). - PubMed
  155. Weissler, K. A. & Frischmeyer-Guerrerio, P. A. Genetic evidence for the role of transforming growth factor-β in atopic phenotypes. Curr. Opin. Immunol. 60, 54–62 (2019). - PubMed
  156. Cannaerts, E., Beek, G., Verstraeten, A., Laer, L. Van & Loeys, B. TGF-β signalopathies as a paradigm for translational medicine. Eur. J. Med. Genet. 58, 695–703 (2015). - PubMed
  157. Schepers, D. et al. A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3. Hum. Mutat. 39, 621–634 (2018). - PubMed
  158. Frischmeyer-Guerrerio, P. A. et al. TGF receptor mutations impose a strong predisposition for human allergic disease. Sci. Transl. Med. 5, 195ra94 (2013). - PubMed
  159. Naviglio, S. et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J. Crohns Colitis 8, 770–774 (2014). - PubMed
  160. Guerrerio, A. L. et al. Increased prevalence of inflammatory bowel disease in patients with mutations in genes encoding the receptor subunits for TGFβ. Inflamm. Bowel Dis. 22, 2058–2062 (2016). - PubMed
  161. Kotlarz, D. et al. Human TGF-β1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nat. Genet. 50, 344–348 (2018). - PubMed
  162. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011). - PubMed
  163. López-Herrera, G. et al. Brutonˈs tyrosine kinase-an integral protein of B cell development that also has an essential role in the innate immune system. J. Leukoc. Biol. 95, 243–250 (2014). - PubMed
  164. Shillitoe, B. & Gennery, A. X-linked agammaglobulinaemia: outcomes in the modern era. Clin. Immunol. 183, 54–62 (2017). - PubMed
  165. Barmettler, S. et al. Gastrointestinal manifestations in X-linked agammaglobulinemia. J. Clin. Immunol. 37, 287–294 (2017). - PubMed
  166. Yazdani, R., Azizi, G., Abolhassani, H. & Aghamohammadi, A. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand. J. Immunol. 85, 3–12 (2017). - PubMed
  167. Jorgensen, G. H., Thorsteinsdottir, I., Gudmundsson, S., Hammarstrom, L. & Ludviksson, B. R. Familial aggregation of IgAD and autoimmunity. Clin. Immunol. 131, 233–239 (2009). - PubMed
  168. Fadlallah, J. et al. Microbial ecology perturbation in human IgA deficiency. Sci. Transl. Med. 10, eaan1217 (2018). - PubMed
  169. Sterlin, D., Fadlallah, J., Slack, E. & Gorochov, G. The antibody/microbiota interface in health and disease. Mucosal Immunol. 13, 3–11 (2020). - PubMed
  170. Ludvigsson, J. F., Neovius, M. & Hammarström, L. Risk of infections among 2100 individuals with iga deficiency: a nationwide cohort study. J. Clin. Immunol. 36, 134–140 (2016). - PubMed
  171. Fadlallah, J. et al. Synergistic convergence of microbiota-specific systemic IgG and secretory IgA. J. Allergy Clin. Immunol. 143, 1575–1585.e4 (2019). - PubMed
  172. Cunningham-Rundles, C. Common variable immune deficiency: dissection of the variable. Immunol. Rev. 287, 145–161 (2019). - PubMed
  173. Bogaert, D. J. A. et al. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J. Med. Genet. 53, 575–590 (2016). - PubMed
  174. Hernandez-Trujillo, V. P. et al. Autoimmunity and Inflammation in X-linked agammaglobulinemia. J. Clin. Immunol. 34, 627–632 (2014). - PubMed
  175. Nunes-Santos, C. J., Uzel, G. & Rosenzweig, S. D. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J. Allergy Clin. Immunol. 143, 1676–1687 (2019). - PubMed
  176. Gereige, J. D. & Maglione, P. J. Current understanding and recent developments in common variable immunodeficiency associated autoimmunity. Front. Immunol. 10, 2753 (2019). - PubMed
  177. Romberg, N. et al. Patients with common variable immunodeficiency with autoimmune cytopenias exhibit hyperplastic yet inefficient germinal center responses. J. Allergy Clin. Immunol. 143, 258–265 (2019). - PubMed
  178. Le Coz, C. et al. Common variable immunodeficiency–associated endotoxemia promotes early commitment to the T follicular lineage. J. Allergy Clin. Immunol. 144, 1660–1673 (2019). - PubMed
  179. Malamut, G. et al. The enteropathy associated with common variable immunodeficiency: the delineated frontiers with celiac disease. Am J Gastroenterol 105, 2262–2275 (2010). - PubMed
  180. Fischer, A., Notarangelo, L. D., Neven, B., Cavazzana, M. & Puck, J. M. Severe combined immunodeficiencies and related disorders. Nat. Rev. Dis. Prim. 1, 1–18 (2015). - PubMed
  181. Pazmandi, J., Kalinichenko, A., Ardy, R. C. & Boztug, K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol. Rev. 287, 162–185 (2019). - PubMed
  182. Villa, A. & Notarangelo, L. D. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol. Rev. 287, 73–90 (2019). - PubMed
  183. Rigoni, R. et al. Intestinal microbiota sustains inflammation and autoimmunity induced by hypomorphic RAG defects. J. Exp. Med. 213, 355–375 (2016). - PubMed
  184. Powell, B. R., Buist, N. R. M. & Stenzel, P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr. 100, 731–737 (1982). - PubMed
  185. Chatila, T. A. et al. JM2, encoding a fork head–related protein, is mutated in X-linked autoimmunity–allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000). - PubMed
  186. Ferguson, P. J. et al. Manifestations and linkage analysis in X-linked autoimmunity-immunodeficiency syndrome. Am. J. Med. Genet. 90, 390–397 (2000). - PubMed
  187. Bennett, C. L. et al. X-linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3. Am. J. Hum. Genet. 66, 461–468 (2000). - PubMed
  188. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001). - PubMed
  189. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001). - PubMed
  190. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001). - PubMed
  191. Hori, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003). - PubMed
  192. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003). - PubMed
  193. Khattri, R., Cox, T., Yasayko, S.-A. & Ramsdell, F. An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003). - PubMed
  194. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996). - PubMed
  195. Chinen, T., Volchkov, P. Y., Chervonsky, A. V. & Rudensky, A. Y. A critical role for regulatory T cell–mediated control of inflammation in the absence of commensal microbiota. J. Exp. Med. 207, 2323–2330 (2010). - PubMed
  196. Coombes, J. L. et al. A functionally specialized population of mucosal CD103 + DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007). - PubMed
  197. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011). - PubMed
  198. Sefik, E. et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ - PubMed
  199. Ohnmacht, C. et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORγt - PubMed
  200. Whibley, N., Tucci, A. & Powrie, F. Regulatory T cell adaptation in the intestine and skin. Nat. Immunol. 20, 386–396 (2019). - PubMed
  201. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012). - PubMed
  202. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory t cells in the lamina propria. Immunity 34, 237–246 (2011). - PubMed
  203. Barzaghi, F. et al. Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: an international multicenter retrospective study. J. Allergy Clin. Immunol. 141, 1036–1049.e5 (2018). - PubMed
  204. Duclaux-Loras, R. et al. Clinical heterogeneity of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a French multicenter retrospective study. Clin. Transl. Gastroenterol. 9, e201 (2018). - PubMed
  205. Patey-Mariaud de Serre, N. et al. Digestive histopathological presentation of IPEX syndrome. Mod. Pathol. 22, 95–102 (2009). - PubMed
  206. Moes, N. et al. Reduced expression of FOXP3 and regulatory T-cell function in severe forms of early-onset autoimmune enteropathy. Gastroenterology 139, 770–778 (2010). - PubMed
  207. Clough, J. N., Omer, O. S., Tasker, S., Lord, G. M. & Irving, P. M. Regulatory T-cell therapy in Crohn’s disease: challenges and advances. Gut 69, 942–952 (2020). - PubMed
  208. Toomer, K. H. et al. Essential and non-overlapping IL-2Rα-dependent processes for thymic development and peripheral homeostasis of regulatory T cells. Nat. Commun. 10, 1037 (2019). - PubMed
  209. Goudy, K. et al. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin. Immunol. 146, 248–261 (2013). - PubMed
  210. Zhang, Z. et al. Human interleukin-2 receptor b mutations associated with defects in immunity and peripheral tolerance. J. Exp. Med. 216, 1311–1327 (2019). - PubMed
  211. Hwa, V. STAT5B deficiency: Impacts on human growth and immunity. Growth Horm. IGF Res. 28, 16–20 (2016). - PubMed
  212. Schubert, D. et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410–1416 (2014). - PubMed
  213. Schwab, C. et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4–insufficient subjects. J. Allergy Clin. Immunol. 142, 1932–1946 (2018). - PubMed
  214. Lo, B. et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436–40 (2015). - PubMed
  215. Gámez-Díaz, L. et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J. Allergy Clin. Immunol. 137, 223–230 (2016). - PubMed
  216. Kostel Bal, S. et al. Multiple presentations of LRBA deficiency: a single-center experience. J. Clin. Immunol. 37, 790–800 (2017). - PubMed
  217. Verma, N., Burns, S. O., Walker, L. S. K. & Sansom, D. M. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin. Exp. Immunol. 190, 1–7 (2017). - PubMed
  218. Gupta, A., Felice, K. M.De, Loftus, E. V. & Khanna, S. Systematic review: colitis associated with anti-CTLA-4 therapy. Aliment. Pharmacol. Ther. 42, 406–417 (2015). - PubMed
  219. Flanagan, S. E. et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat. Genet. 46, 812–814 (2014). - PubMed
  220. Milner, J. D. et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125, 591–599 (2015). - PubMed
  221. Vogel, T. P., Milner, J. D. & Cooper, M. A. The ying and yang of STAT3 in human disease. J. Clin. Immunol. 35, 615–623 (2015). - PubMed
  222. Parlato, M. et al. Efficacy of ruxolitinib therapy in a patient with severe enterocolitis associated with a STAT3 gain-of-function mutation. Gastroenterology 156, 1206–1210.e1 (2019). - PubMed
  223. Hillmer, E. J., Zhang, H., Li, H. S. & Watowich, S. S. STAT3 signaling in immunity Introduction: STAT3 discovery, structure and transcriptional function. Cytokine Growth Factor Rev. 31, 1–15 (2016). - PubMed
  224. Forbes, L. R. et al. Jakinibs for the treatment of immune dysregulation in patients with gain-offunction signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J. Allergy Clin. Immunol. 142, 1665–1668 (2018). - PubMed
  225. Haapaniemi, E. M. et al. Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 125, 639–648 (2015). - PubMed
  226. Kane, A. et al. STAT3 is a central regulator of lymphocyte differentiation and function. Curr. Opin. Immunol. 28, 49–57 (2014). - PubMed
  227. Toubiana, J. et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 127, 3154–3164 (2016). - PubMed
  228. Gruber, C. N. et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53, 672–684.e11 (2020). - PubMed
  229. Kaufman, S. S. et al. New insights into the indications for intestinal transplantation. Transplantation 104, 937–946 (2020). - PubMed
  230. Schene, I. F. et al. Prime editing for functional repair in patient-derived disease models. Nat. Commun. 11, 5352 (2020). - PubMed
  231. Clevers, H. et al. Tissue-engineering the intestine: the trials before the trials. Cell Stem Cell 24, 855–859 (2019). - PubMed

Publication Types