Display options
Share it on

Microorganisms. 2021 Mar 04;9(3). doi: 10.3390/microorganisms9030522.

Gut Digestive Function and Microbiome after Correction of Experimental Dysbiosis in Rats by Indigenous Bifidobacteria.

Microorganisms

Lyudmila V Gromova, Elena I Ermolenko, Anastasiya L Sepp, Yulia V Dmitrieva, Anna S Alekseeva, Nadezhda S Lavrenova, Mariya P Kotyleva, Tatyana A Kramskaya, Alena B Karaseva, Alexandr N Suvorov, Andrey A Gruzdkov

Affiliations

  1. Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia.
  2. Department of Molecular Microbiology, Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia.
  3. Department of Medical Microbiology, North-Western State Medical University Named after I.I. Mechnikov, Ministry of Health of the Russian Federation, 195067 Saint-Petersburg, Russia.
  4. Department of Fundamental Problems of Medicine and Medical Technologies, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia.

PMID: 33806341 PMCID: PMC8001560 DOI: 10.3390/microorganisms9030522

Abstract

In recent years, great interest has arisen in the use of autoprobiotics (indigenous bacteria isolated from the organism and introduced into the same organism after growing). This study aimed to evaluate the effects of indigenous bifidobacteria on intestinal microbiota and digestive enzymes in a rat model of antibiotic-associated dysbiosis. Our results showed that indigenous bifidobacteria (the Bf group) accelerate the disappearance of dyspeptic symptoms in rats and prevent an increase in chyme mass in the upper intestine compared to the group without autoprobiotics (the C1 group), but significantly increase the mass of chyme in the colon compared to the C1 group and the control group (healthy animals). In the Bf group in the gut microbiota, the content of opportunistic bacteria (

Keywords: autoprobiotics; intestinal digestive enzymes; microbiome

References

  1. Sci Rep. 2017 May 2;7(1):1424 - PubMed
  2. Int J Mol Med. 2007 Oct;20(4):483-92 - PubMed
  3. PLoS One. 2016 Aug 23;11(8):e0161635 - PubMed
  4. World J Gastroenterol. 2014 Nov 7;20(41):15163-76 - PubMed
  5. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 - PubMed
  6. Curr Microbiol. 2017 Aug;74(8):987-995 - PubMed
  7. J Biol Chem. 2005 Jan 14;280(2):1306-20 - PubMed
  8. Biosci Microbiota Food Health. 2013;32(2):41-9 - PubMed
  9. J Nutr Biochem. 2012 Nov;23(11):1490-7 - PubMed
  10. Am J Physiol Gastrointest Liver Physiol. 2007 Dec;293(6):G1325-32 - PubMed
  11. J Anim Sci Biotechnol. 2016 Nov 8;7:66 - PubMed
  12. Benef Microbes. 2010 Sep;1(3):265-70 - PubMed
  13. Semin Fetal Neonatal Med. 2016 Dec;21(6):380-387 - PubMed
  14. World J Gastroenterol. 2014 Nov 14;20(42):15650-6 - PubMed
  15. Microbiol Spectr. 2017 Jun;5(3): - PubMed
  16. Ross Fiziol Zh Im I M Sechenova. 2012 Jun;98(6):724-33 - PubMed
  17. mBio. 2011 Mar 01;2(2):e00271-10 - PubMed
  18. mBio. 2019 Jun 18;10(3): - PubMed
  19. Am J Physiol Gastrointest Liver Physiol. 2014 May 15;306(10):G824-5 - PubMed
  20. Turk J Gastroenterol. 2019 Sep;30(9):835-842 - PubMed
  21. Am J Physiol Regul Integr Comp Physiol. 2011 Dec;301(6):R1738-47 - PubMed

Publication Types