Display options
Share it on

Int J Hypertens. 2021 Apr 04;2021:8615253. doi: 10.1155/2021/8615253. eCollection 2021.

The Effects of Renal Nerve Denervation on Blood Pressure and Target Organs in Different Hypertensive Rat Models.

International journal of hypertension

Demin Liu, Jing Wang, Haijuan Hu, Guoqiang Gu, Rui Ding, Ruiqin Xie, Wei Cui

Affiliations

  1. Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

PMID: 33884205 PMCID: PMC8041559 DOI: 10.1155/2021/8615253

Abstract

BACKGROUND: Hypertension contributes to the progression of cardiac remodeling and renal damage. In turn, renal sympathetic hyperactivation showed elevated sympathetic nervous system activity and led to blood pressure increase in certain patients. The purpose of this study was to observe the effect of renal nerve denervation on blood pressure and target organ changes in two hypertensive rat models.

METHODS: Hypertensive rats were randomly divided into a renal denervation (RDN) group and sham operation group. Wistar-Kyoto (WKY) rats of the same age were set as the baseline control group. In the secondary hypertension model, SD rats were randomly divided into five groups. Blood pressure and bodyweight were measured every week until they were euthanized.

RESULTS: The two rat models underwent RDN at key timepoints. At these timepoints, the hearts and kidneys were collected for norepinephrine and angiotensin II measurements and histological analysis.

CONCLUSION: RDN performed before development of hypertension showed a significant antihypertensive effect on the secondary hypertension model.

Copyright © 2021 Demin Liu et al.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

References

  1. Int J Hypertens. 2014;2014:735627 - PubMed
  2. Hypertens Res. 2015 Sep;38(9):605-12 - PubMed
  3. Hypertension. 1995 Apr;25(4 Pt 2):893-7 - PubMed
  4. Eur Heart J. 2012 May;33(9):1058-66 - PubMed
  5. Am J Physiol Regul Integr Comp Physiol. 2010 Feb;298(2):R245-53 - PubMed
  6. Circ Res. 2014 Jul 18;115(3):400-9 - PubMed
  7. J Am Coll Cardiol. 2012 Mar 6;59(10):910-2 - PubMed
  8. J Hypertens. 2013 Nov;31(11):2290-8; discussion 2299 - PubMed
  9. J Hypertens. 2016 Mar;34(3):524-30; discussion 531 - PubMed
  10. Methods Mol Biol. 2016;1397:45-52 - PubMed
  11. Hypertension. 2015 Jun;65(6):1202-8 - PubMed
  12. Hypertension. 1998 Feb;31(2):649-56 - PubMed
  13. Am J Physiol. 1991 Feb;260(2 Pt 2):R298-305 - PubMed
  14. Biomed Res. 2015;36(3):169-77 - PubMed
  15. Curr Hypertens Rev. 2013 May;9(2):121-9 - PubMed
  16. J Am Coll Cardiol. 2012 Mar 6;59(10):901-9 - PubMed
  17. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2012 Aug;37(8):829-33 - PubMed
  18. Physiol Res. 2015;64(5):653-62 - PubMed
  19. Herz. 2015 Jun;40(4):695-701 - PubMed
  20. Oxid Med Cell Longev. 2015;2015:691070 - PubMed
  21. Sci Rep. 2015 Dec 22;5:18582 - PubMed
  22. Am J Physiol. 1981 Nov;241(5):R379-84 - PubMed
  23. Lancet. 2015 May 16;385(9981):1957-65 - PubMed
  24. Curr Hypertens Rep. 2000 Jun;2(3):319-26 - PubMed
  25. Eur Heart J. 2013 Jul;34(28):2149-57 - PubMed
  26. Am J Hypertens. 2015 Feb;28(2):256-65 - PubMed
  27. Front Physiol. 2015 Mar 25;6:75 - PubMed
  28. Transplantation. 2001 Sep 27;72(6):1153-5 - PubMed
  29. Am J Physiol. 1980 May;238(5):R353-8 - PubMed
  30. Cardiovasc Intervent Radiol. 2014 Feb;37(1):218-23 - PubMed
  31. N Engl J Med. 2014 Apr 10;370(15):1393-401 - PubMed
  32. Clin Exp Pharmacol Physiol. 2009 Nov;36(11):1110-9 - PubMed
  33. Hypertens Res. 2016 May;39(5):277-92 - PubMed
  34. Hypertension. 1982 May-Jun;4(3 Pt 2):166-74 - PubMed
  35. J Am Coll Cardiol. 2014 May 13;63(18):1916-23 - PubMed
  36. J Hypertens. 2016 Mar;34(3):438-44; discussion 444 - PubMed
  37. Eur Heart J. 2014 Jul;35(26):1752-9 - PubMed
  38. Am J Physiol Regul Integr Comp Physiol. 2013 Apr 15;304(8):R675-82 - PubMed
  39. Eur Heart J. 2015 Sep 1;36(33):2219-27 - PubMed
  40. Int Urol Nephrol. 1986;18(1):3-18 - PubMed

Publication Types