Display options
Share it on

Burns Trauma. 2021 Apr 01;9:tkab001. doi: 10.1093/burnst/tkab001. eCollection 2021 Jan.

Traumatic injury is associated with reduced deoxyribonuclease activity and dysregulation of the actin scavenging system.

Burns & trauma

Jon Hazeldine, Robert J Dinsdale, David N Naumann, Animesh Acharjee, Jonathan R B Bishop, Janet M Lord, Paul Harrison

Affiliations

  1. Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom.
  2. National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Heritage Building, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom.
  3. Scar Free Foundation Birmingham Centre for Burns Research, University Hospital Birmingham Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom.
  4. Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom.
  5. Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom.

PMID: 33834079 PMCID: PMC8014516 DOI: 10.1093/burnst/tkab001

Abstract

BACKGROUND: Traumatic injury is associated with increased concentrations of cell-free DNA (cfDNA) in the circulation, which contribute to post-injury complications. The endonuclease deoxyribonuclease 1 (DNase-1) is responsible for removing 90% of circulating cfDNA. Recently, DNase activity was reported to be significantly reduced following major non-traumatic brain injury (TBI), but the processes responsible were not investigated. Moreover, it is not known how quickly following injury DNase activity is reduced and whether this also occurs after TBI.

METHODS: At 3 post-injury time points (≤1, 4-12 and 48-72 hours), blood samples were obtained from 155 adult trauma patients that had sustained an isolated TBI (n = 21), TBI with accompanying extracranial injury (TBI

RESULTS: Significantly elevated concentrations of plasma cfDNA were seen in TBI, TBI

CONCLUSIONS: The post-traumatic increase in circulating cfDNA that occurs following extracranial trauma and TBI is accompanied by reduced DNase activity. We propose that, secondary to reduced GSN and VDBP levels, elevated circulating concentrations of G-actin underlie the post-injury reduction in DNase activity. Reducing circulating cfDNA levels via therapeutic restoration of DNase-1 activity may improve clinical outcomes post-injury.

© The Author(s) 2021. Published by Oxford University Press.

Keywords: Cell-free DNA; Deoxyribonuclease; Extracellular actin scavenging system; Pre-hospital; Trauma

References

  1. Crit Care Med. 2007 Mar;35(3):849-55 - PubMed
  2. PLoS One. 2012;7(2):e32366 - PubMed
  3. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4742-6 - PubMed
  4. Biomed Res Int. 2014;2014:306580 - PubMed
  5. Biochem J. 1991 Feb 15;274 ( Pt 1):237-41 - PubMed
  6. J Clin Invest. 1988 Jul;82(1):364-9 - PubMed
  7. Shock. 2015 Sep;44(3):265-71 - PubMed
  8. Am J Respir Crit Care Med. 1999 Nov;160(5 Pt 1):1673-81 - PubMed
  9. Shock. 2008 Oct;30(4):352-8 - PubMed
  10. EMBO Rep. 2020 Apr 3;21(4):e49799 - PubMed
  11. J Orthop Trauma. 2010 Sep;24(9):534-8 - PubMed
  12. Am J Physiol Cell Physiol. 2007 Apr;292(4):C1323-30 - PubMed
  13. Shock. 1999 Aug;12(2):102-4 - PubMed
  14. J Surg Res. 2020 May;249:104-113 - PubMed
  15. Front Immunol. 2018 May 08;9:891 - PubMed
  16. Crit Care Med. 1995 Apr;23(4):660-4 - PubMed
  17. Am J Hum Genet. 1999 Jan;64(1):218-24 - PubMed
  18. Br J Surg. 2020 Mar;107(4):391-401 - PubMed
  19. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9813-8 - PubMed
  20. J Neurotrauma. 2014 Jun 1;31(11):1039-45 - PubMed
  21. Eur J Biochem. 1980 Mar;104(2):367-79 - PubMed
  22. Biochemistry. 2005 Jul 19;44(28):9590-7 - PubMed
  23. Ann Surg. 2017 Jun;265(6):1241-1249 - PubMed
  24. N Engl J Med. 2018 Jul 26;379(4):315-326 - PubMed
  25. Shock. 2015 Aug;44(2):166-72 - PubMed
  26. Ann Surg. 2013 Oct;258(4):591-6; discussion 596-8 - PubMed
  27. Burns. 2008 Sep;34(6):809-16 - PubMed
  28. J Immunol. 2008 Oct 1;181(7):4936-44 - PubMed
  29. Brain Behav Immun. 2017 Nov;66:56-69 - PubMed
  30. J Neurotrauma. 2014 Oct 1;31(19):1639-46 - PubMed
  31. Clin Chim Acta. 2013 Sep 23;424:109-13 - PubMed
  32. J Neurotrauma. 2007 Jul;24(7):1172-81 - PubMed
  33. Crit Care. 2017 Jan 24;21(1):14 - PubMed
  34. Clin Chem. 1993 Mar;39(3):448-52 - PubMed
  35. Shock. 2020 Jul;54(1):44-49 - PubMed
  36. Arterioscler Thromb Vasc Biol. 2015 Dec;35(12):2544-53 - PubMed
  37. Immunity. 2012 Apr 20;36(4):635-45 - PubMed
  38. J Immunol. 2011 Jul 1;187(1):538-52 - PubMed
  39. Clin Chim Acta. 2012 Dec 24;414:12-7 - PubMed
  40. Front Immunol. 2019 Apr 02;10:685 - PubMed
  41. J Appl Physiol (1985). 2004 Jan;96(1):25-31 - PubMed
  42. Clin Chem. 2000 Mar;46(3):319-23 - PubMed
  43. J Leukoc Biol. 1994 Mar;55(3):349-54 - PubMed
  44. Clin Chem. 2003 Aug;49(8):1286-91 - PubMed
  45. J Crit Care. 2012 Oct;27(5):527.e1-6 - PubMed
  46. J Clin Invest. 1986 Sep;78(3):736-42 - PubMed
  47. Clin Chem. 2004 Jan;50(1):213-6 - PubMed
  48. PLoS Med. 2017 Jul 18;14(7):e1002338 - PubMed
  49. PLoS One. 2013 Aug 20;8(8):e72834 - PubMed
  50. Shock. 2010 Jul;34(1):55-9 - PubMed
  51. Front Immunol. 2018 Apr 19;9:536 - PubMed
  52. N Engl J Med. 1992 May 14;326(20):1335-41 - PubMed
  53. Mol Oncol. 2020 Aug;14(8):1670-1679 - PubMed
  54. Integr Biol (Camb). 2016 Feb;8(2):149-55 - PubMed
  55. Sci Rep. 2019 Sep 20;9(1):13648 - PubMed
  56. J Trauma Acute Care Surg. 2018 Aug;85(2):354-358 - PubMed
  57. PLoS One. 2015 Mar 16;10(3):e0120549 - PubMed
  58. J Trauma Acute Care Surg. 2012 Feb;72(2):491-6 - PubMed
  59. Am J Physiol Lung Cell Mol Physiol. 2017 Jun 1;312(6):L1018-L1028 - PubMed
  60. J Trauma. 1998 Jun;44(6):1031-5; discussion 1035-6 - PubMed
  61. Scand J Trauma Resusc Emerg Med. 2014 Mar 19;22:21 - PubMed
  62. J Investig Med. 2002 Jan;50(1):54-60 - PubMed
  63. FEBS Lett. 2010 Jul 16;584(14):3193-7 - PubMed
  64. Chest. 2020 Jan;157(1):67-76 - PubMed
  65. Injury. 1999 May;30(4):275-81 - PubMed
  66. Am J Physiol Lung Cell Mol Physiol. 2015 Jul 1;309(1):L11-6 - PubMed
  67. Immunity. 2012 Apr 20;36(4):646-57 - PubMed
  68. Apoptosis. 2007 Aug;12(8):1511-21 - PubMed
  69. J Crit Care. 2013 Dec;28(6):1027-31 - PubMed
  70. Mediators Inflamm. 2012;2012:149560 - PubMed
  71. Nat Med. 2008 Sep;14(9):985-90 - PubMed
  72. J Trauma Acute Care Surg. 2015 Feb;78(2):282-8 - PubMed
  73. Blood. 2011 Aug 18;118(7):1952-61 - PubMed
  74. Am J Physiol. 1993 Dec;265(6 Pt 1):G1071-81 - PubMed
  75. Proteomics. 2005 Aug;5(12):3131-6 - PubMed
  76. Cell Struct Funct. 1998 Apr;23(2):49-56 - PubMed
  77. Intensive Care Med. 2016 Apr;42(4):551-561 - PubMed
  78. J Histochem Cytochem. 1998 Jul;46(7):833-40 - PubMed
  79. Nature. 2010 Mar 4;464(7285):104-7 - PubMed
  80. J Cell Biol. 1986 Oct;103(4):1473-81 - PubMed
  81. Crit Care Med. 1998 Feb;26(2):285-9 - PubMed
  82. Acta Orthop Suppl. 2005 Jun;76(317):2 p preceding table of contents-24 - PubMed

Publication Types