Display options
Share it on

Front Syst Neurosci. 2021 Apr 06;15:652080. doi: 10.3389/fnsys.2021.652080. eCollection 2021.

Analyzing the Loss and the Recovery of Consciousness: Functional Connectivity Patterns and Changes in Heart Rate Variability During Propofol-Induced Anesthesia.

Frontiers in systems neuroscience

Davide Sattin, Dunja Duran, Sergio Visintini, Elena Schiaffi, Ferruccio Panzica, Carla Carozzi, Davide Rossi Sebastiano, Elisa Visani, Eleonora Tobaldini, Angelica Carandina, Valeria Citterio, Francesca Giulia Magnani, Martina Cacciatore, Eleonora Orena, Nicola Montano, Dario Caldiroli, Silvana Franceschetti, Mario Picozzi, Leonardi Matilde

Affiliations

  1. Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
  2. Clinical and Experimental Medicine and Medical Humanities-PhD Program, Insubria University, Varese, Italy.
  3. Clinical and Experimental Epileptology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
  4. Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
  5. Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
  6. Clinical Engineering Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
  7. Department of Anaesthesia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
  8. Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
  9. Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
  10. Center for Clinical Ethics, Biotechnology and Life Sciences Department, Insubria University, Varese, Italy.

PMID: 33889078 PMCID: PMC8055941 DOI: 10.3389/fnsys.2021.652080

Abstract

The analysis of the central and the autonomic nervous systems (CNS, ANS) activities during general anesthesia (GA) provides fundamental information for the study of neural processes that support alterations of the consciousness level. In the present pilot study, we analyzed EEG signals and the heart rate (HR) variability (HRV) in a sample of 11 patients undergoing spinal surgery to investigate their CNS and ANS activities during GA obtained with propofol administration. Data were analyzed during different stages of GA: baseline, the first period of anesthetic induction, the period before the loss of consciousness, the first period after propofol discontinuation, and the period before the recovery of consciousness (ROC). In EEG spectral analysis, we found a decrease in posterior alpha and beta power in all cortical areas observed, except the occipital ones, and an increase in delta power, mainly during the induction phase. In EEG connectivity analysis, we found a significant increase of local efficiency index in alpha and delta bands between baseline and loss of consciousness as well as between baseline and ROC in delta band only and a significant reduction of the characteristic path length in alpha band between the baseline and ROC. Moreover, connectivity results showed that in the alpha band there was mainly a progressive increase in the number and in the strength of incoming connections in the frontal region, while in the beta band the parietal region showed mainly a significant increase in the number and in the strength of outcoming connections values. The HRV analysis showed that the induction of anesthesia with propofol was associated with a progressive decrease in complexity and a consequent increase in the regularity indexes and that the anesthetic procedure determined bradycardia which was accompanied by an increase in cardiac sympathetic modulation and a decrease in cardiac parasympathetic modulation during the induction. Overall, the results of this pilot study showed as propofol-induced anesthesia caused modifications on EEG signal, leading to a "rebalance" between long and short-range cortical connections, and had a direct effect on the cardiac system. Our data suggest interesting perspectives for the interactions between the central and autonomic nervous systems for the modulation of the consciousness level.

Copyright © 2021 Sattin, Duran, Visintini, Schiaffi, Panzica, Carozzi, Rossi Sebastiano, Visani, Tobaldini, Carandina, Citterio, Magnani, Cacciatore, Orena, Montano, Caldiroli, Franceschetti, Picozzi and Matilde.

Keywords: anesthesia; connectivity; consciousness; heart rate variability; propofol

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. PLoS Comput Biol. 2016 Aug 10;12(8):e1005048 - PubMed
  2. Br J Anaesth. 2001 Sep;87(3):421-8 - PubMed
  3. Clin Auton Res. 2013 Dec;23(6):313-23 - PubMed
  4. Anesthesiology. 1989 Aug;71(2):260-77 - PubMed
  5. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14529-34 - PubMed
  6. Conscious Cogn. 2008 Mar;17(1):94-113 - PubMed
  7. J Clin Monit Comput. 2014 Dec;28(6):573-80 - PubMed
  8. Anesthesiology. 2010 Nov;113(5):1081-91 - PubMed
  9. Anesthesiology. 1992 Apr;76(4):609-16 - PubMed
  10. Pharmacol Rep. 2005 Jan-Feb;57(1):128-34 - PubMed
  11. J Cardiothorac Vasc Anesth. 1999 Aug;13(4):451-3 - PubMed
  12. Front Hum Neurosci. 2017 Jun 28;11:328 - PubMed
  13. Br J Anaesth. 2008 Oct;101(4):473-8 - PubMed
  14. Anesthesiology. 2007 Aug;107(2):202-12 - PubMed
  15. Ann Fr Anesth Reanim. 2014 Feb;33(2):72-82 - PubMed
  16. Front Comput Neurosci. 2014 Jun 10;8:61 - PubMed
  17. Neuron. 2011 Apr 28;70(2):200-27 - PubMed
  18. CNS Spectr. 2007 Jul;12(7):545-52 - PubMed
  19. Int J Cardiol. 2010 May 28;141(2):122-31 - PubMed
  20. Anesthesiology. 2005 Jul;103(1):20-4 - PubMed
  21. Neuroimage. 2018 Oct 1;179:414-428 - PubMed
  22. Sci Rep. 2018 Apr 16;8(1):6015 - PubMed
  23. Anesthesiology. 2013 Dec;119(6):1347-59 - PubMed
  24. IEEE Trans Biomed Eng. 2001 Nov;48(11):1282-91 - PubMed
  25. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4303-6 - PubMed
  26. Circulation. 1996 Mar 1;93(5):1043-65 - PubMed
  27. PLoS Comput Biol. 2018 Aug 30;14(8):e1006424 - PubMed
  28. Anesth Analg. 2009 Aug;109(2):539-50 - PubMed
  29. Anaesthesia. 1995 Feb;50(2):108-13 - PubMed
  30. Anesth Analg. 1987 Nov;66(11):1115-20 - PubMed
  31. Biol Psychol. 2009 May;81(2):110-7 - PubMed
  32. Anesth Analg. 2011 Mar;112(3):587-92 - PubMed
  33. Appl Psychophysiol Biofeedback. 2019 Dec;44(4):331-342 - PubMed
  34. J Appl Physiol (1985). 2007 Oct;103(4):1143-9 - PubMed
  35. Pain Res Manag. 2017;2017:7941238 - PubMed
  36. J Clin Psychopharmacol. 1990 Aug;10(4):244-51 - PubMed
  37. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):449-54 - PubMed
  38. Anesthesiology. 2013 Jun;118(6):1264-75 - PubMed
  39. Anesth Analg. 2002 Jun;94(6):1530-3, table of contents - PubMed
  40. Br J Anaesth. 2018 Mar;120(3):525-536 - PubMed
  41. Circulation. 2005 Jul 26;112(4):465-70 - PubMed
  42. Ann N Y Acad Sci. 2009 Mar;1157:48-60 - PubMed
  43. PLoS Comput Biol. 2016 Jan 14;12(1):e1004669 - PubMed
  44. Ann Biomed Eng. 2012 Aug;40(8):1802-13 - PubMed
  45. Neurosci Biobehav Rev. 2009 Feb;33(2):81-8 - PubMed
  46. Neurosci Biobehav Rev. 2017 Apr;75:274-296 - PubMed
  47. Anesthesiology. 2012 Apr;116(4):946-59 - PubMed
  48. Biophys J. 2008 Sep 15;95(6):2722-7 - PubMed
  49. Front Comput Neurosci. 2017 May 12;11:36 - PubMed
  50. Anesthesiology. 2014 Apr;120(4):819-28 - PubMed
  51. Ann N Y Acad Sci. 2006 Nov;1088:361-72 - PubMed
  52. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H702-8 - PubMed
  53. PLoS One. 2014 Sep 29;9(9):e106291 - PubMed
  54. Front Syst Neurosci. 2019 Aug 14;13:36 - PubMed
  55. Anesthesiology. 1999 Jun;90(6):1502-16 - PubMed
  56. Neuroreport. 2017 Sep 27;28(14):896-902 - PubMed
  57. Conscious Cogn. 2000 Sep;9(3):370-86 - PubMed
  58. Neurosci Lett. 2017 Jun 9;651:9-15 - PubMed
  59. Can J Anaesth. 1992 Nov;39(9):987-91 - PubMed
  60. J Anesth. 2012 Dec;26(6):900-4 - PubMed
  61. Conscious Cogn. 2001 Jun;10(2):165-83 - PubMed
  62. Curr Biol. 2011 Dec 6;21(23):1988-93 - PubMed
  63. Anesthesiology. 2012 Nov;117(5):1140; author reply 1140 - PubMed
  64. PLoS One. 2017 Nov 9;12(11):e0187743 - PubMed
  65. Anesth Analg. 1992 Jun;74(6):877-83 - PubMed
  66. Anesthesiology. 1994 Apr;80(4):859-71 - PubMed
  67. J Oral Maxillofac Surg. 2016 Sep;74(9):1751.e1-6 - PubMed
  68. Prog Brain Res. 2001;130:33-47 - PubMed
  69. Brain Behav. 2020 Jan;10(1):e01474 - PubMed
  70. Ann Indian Acad Neurol. 2008 Jul;11(3):146-53 - PubMed
  71. Physiol Meas. 2015 Apr;36(4):715-26 - PubMed
  72. Anaesthesia. 2001 Mar;56(3):266-71 - PubMed
  73. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1142-51 - PubMed
  74. Anesthesiology. 1997 Jan;86(1):24-33 - PubMed
  75. Anesthesiology. 2003 Jan;98(1):34-40 - PubMed
  76. PLoS Comput Biol. 2017 Dec 11;13(12):e1005879 - PubMed
  77. Anaesthesia. 1993 Oct;48(10):849-55 - PubMed
  78. Med Biol Eng Comput. 2006 Dec;44(12):1031-51 - PubMed
  79. Minerva Anestesiol. 2015 Jan;81(1):3-11 - PubMed
  80. Auton Neurosci. 2009 May 11;147(1-2):91-6 - PubMed
  81. Clin EEG Neurosci. 2014 Apr;45(2):77-88 - PubMed
  82. J Affect Disord. 2000 Dec;61(3):201-16 - PubMed
  83. Anesthesiology. 2019 Jun;130(6):885-897 - PubMed
  84. Psychol Rev. 1958 Jan;65(1):8-13 - PubMed
  85. Acta Anaesthesiol Scand. 2004 Feb;48(2):145-53 - PubMed
  86. Brain Res. 2014 Apr 22;1559:11-25 - PubMed
  87. Front Neurosci. 2019 Jun 21;13:530 - PubMed
  88. Psychophysiology. 2016 Dec;53(12):1843-1851 - PubMed
  89. Front Comput Neurosci. 2016 Nov 22;10:121 - PubMed

Publication Types