Display options
Share it on

Front Hum Neurosci. 2021 Apr 06;15:634748. doi: 10.3389/fnhum.2021.634748. eCollection 2021.

Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces.

Frontiers in human neuroscience

Nikki Leeuwis, Alissa Paas, Maryam Alimardani

Affiliations

  1. Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands.

PMID: 33889080 PMCID: PMC8055841 DOI: 10.3389/fnhum.2021.634748

Abstract

Brain-computer interfaces (BCIs) are communication bridges between a human brain and external world, enabling humans to interact with their environment without muscle intervention. Their functionality, therefore, depends on both the BCI system and the cognitive capacities of the user. Motor-imagery BCIs (MI-BCI) rely on the users' mental imagination of body movements. However, not all users have the ability to sufficiently modulate their brain activity for control of a MI-BCI; a problem known as BCI illiteracy or inefficiency. The underlying mechanism of this phenomenon and the cause of such difference among users is yet not fully understood. In this study, we investigated the impact of several cognitive and psychological measures on MI-BCI performance. Fifty-five novice BCI-users participated in a left- versus right-hand motor imagery task. In addition to their BCI classification error rate and demographics, psychological measures including personality factors, affinity for technology, and motivation during the experiment, as well as cognitive measures including visuospatial memory and spatial ability and Vividness of Visual Imagery were collected. Factors that were found to have a significant impact on MI-BCI performance were Vividness of Visual Imagery, and the personality factors of orderliness and autonomy. These findings shed light on individual traits that lead to difficulty in BCI operation and hence can help with early prediction of inefficiency among users to optimize training for them.

Copyright © 2021 Leeuwis, Paas and Alimardani.

Keywords: BCI illiteracy; BCI performance; brain-computer interface; cognitive abilities; motor imagery; personality traits; visuospatial memory and spatial ability; vividness of visual imagery questionnaire

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. IEEE J Transl Eng Health Med. 2018 Nov 09;6:2000311 - PubMed
  2. J Neural Eng. 2019 Oct 23;16(6):066012 - PubMed
  3. IEEE Access. 2018;6:10840-10849 - PubMed
  4. Appl Psychophysiol Biofeedback. 2018 Dec;43(4):293-300 - PubMed
  5. Clin Neurophysiol. 2013 Aug;124(8):1586-95 - PubMed
  6. Br J Psychol. 1973 Feb;64(1):17-24 - PubMed
  7. Clin Neurophysiol. 2002 Jan;113(1):43-7 - PubMed
  8. Gigascience. 2017 Jul 1;6(7):1-8 - PubMed
  9. Front Hum Neurosci. 2019 Sep 26;13:329 - PubMed
  10. Int J Med Educ. 2011 Jun 27;2:53-55 - PubMed
  11. J Neural Eng. 2020 Aug 17;17(4):041001 - PubMed
  12. Gigascience. 2019 May 1;8(5): - PubMed
  13. Front Neurosci. 2010 Jul 21;4: - PubMed
  14. PLoS One. 2016 Sep 06;11(9):e0161945 - PubMed
  15. PLoS One. 2015 Dec 01;10(12):e0143962 - PubMed
  16. Front Neuroinform. 2018 Nov 06;12:78 - PubMed
  17. Percept Mot Skills. 1978 Oct;47(2):599-604 - PubMed
  18. J Physiol. 2019 Nov 6;: - PubMed
  19. PLoS Biol. 2018 May 10;16(5):e2003787 - PubMed
  20. Biomed Eng Online. 2014 Dec 04;13:158 - PubMed
  21. Sci Robot. 2019 Jun 26;4(31): - PubMed
  22. Front Hum Neurosci. 2018 Feb 15;12:59 - PubMed
  23. Sci Eng Ethics. 2019 Aug;25(4):1217-1233 - PubMed
  24. Brain Cogn. 1998 Dec;38(3):317-38 - PubMed
  25. Front Hum Neurosci. 2013 Sep 17;7:568 - PubMed
  26. Cereb Cortex. 2021 Jan 1;31(1):426-438 - PubMed
  27. Clin Neurophysiol. 2002 Jun;113(6):767-91 - PubMed
  28. Sports (Basel). 2019 May 29;7(6): - PubMed
  29. Front Hum Neurosci. 2019 Apr 17;13:128 - PubMed
  30. Behav Brain Res. 2020 Jan 27;378:112240 - PubMed
  31. Sensors (Basel). 2020 Mar 14;20(6): - PubMed
  32. Clin Neurophysiol. 1999 Nov;110(11):1842-57 - PubMed
  33. Science. 1971 Feb 19;171(3972):701-3 - PubMed
  34. Comput Biol Med. 2020 Dec;127:104079 - PubMed
  35. Evid Based Complement Alternat Med. 2010 Jun;7(2):249-57 - PubMed
  36. Brain Sci. 2020 Oct 04;10(10): - PubMed
  37. J Clin Exp Neuropsychol. 2005 May;27(4):449-59 - PubMed
  38. Appl Neuropsychol Child. 2016;5(1):44-9 - PubMed
  39. Biol Psychol. 2012 Jan;89(1):80-6 - PubMed
  40. J Neural Eng. 2016 Jun;13(3):036024 - PubMed
  41. Front Neurosci. 2020 Jun 30;14:692 - PubMed
  42. Comput Methods Programs Biomed. 2016 Aug;132:63-74 - PubMed
  43. Sci Rep. 2020 Feb 7;10(1):2087 - PubMed
  44. J Neuroeng Rehabil. 2015 Dec 01;12:107 - PubMed
  45. J Neurosci Methods. 2008 Jan 15;167(1):43-50 - PubMed
  46. Brain Cogn. 2008 Apr;66(3):260-4 - PubMed
  47. Sci Rep. 2016 Apr 07;6:24076 - PubMed
  48. Front Syst Neurosci. 2014 Apr 09;8:52 - PubMed
  49. PLoS One. 2019 Jan 25;14(1):e0207351 - PubMed
  50. J Neurol Phys Ther. 2007 Mar;31(1):20-9 - PubMed
  51. Prog Brain Res. 2016;228:3-35 - PubMed
  52. Front Neurosci. 2020 Aug 21;14:882 - PubMed
  53. IEEE Trans Neural Syst Rehabil Eng. 2018 Mar;26(3):666-674 - PubMed
  54. Front Hum Neurosci. 2014 Aug 06;8:574 - PubMed
  55. Int J Occup Saf Ergon. 2008;14(4):423-32 - PubMed
  56. Front Hum Neurosci. 2020 Aug 06;14:321 - PubMed
  57. Front Hum Neurosci. 2019 Jan 23;12:529 - PubMed
  58. Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1014-1017 - PubMed

Publication Types