Display options
Share it on

Cancers (Basel). 2021 Mar 16;13(6). doi: 10.3390/cancers13061325.

The Potential of Artificial Intelligence to Detect Lymphovascular Invasion in Testicular Cancer.

Cancers

Abhisek Ghosh, Korsuk Sirinukunwattana, Nasullah Khalid Alham, Lisa Browning, Richard Colling, Andrew Protheroe, Emily Protheroe, Stephanie Jones, Alan Aberdeen, Jens Rittscher, Clare Verrill

Affiliations

  1. Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  2. Nuffield Department of Clinical and Laboratory Sciences, Oxford University, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  3. Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
  4. Oxford NIHR Biomedical Research Centre, Oxford University, Oxford OX3 9DU, UK.
  5. Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK.
  6. Ground Truth Labs, Oxford OX4 2HN, UK.
  7. Nuffield Department of Surgical Sciences, Oxford University, Oxford OX3 9DU, UK.
  8. Department of Oncology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK.

PMID: 33809521 PMCID: PMC7998792 DOI: 10.3390/cancers13061325

Abstract

Testicular cancer is the most common cancer in men aged from 15 to 34 years. Lymphovascular invasion refers to the presence of tumours within endothelial-lined lymphatic or vascular channels, and has been shown to have prognostic significance in testicular germ cell tumours. In non-seminomatous tumours, lymphovascular invasion is the most powerful prognostic factor for stage 1 disease. For the pathologist, searching multiple slides for lymphovascular invasion can be highly time-consuming. The aim of this retrospective study was to develop and assess an artificial intelligence algorithm that can identify areas suspicious for lymphovascular invasion in histological digital whole slide images. Areas of possible lymphovascular invasion were annotated in a total of 184 whole slide images of haematoxylin and eosin (H&E) stained tissue from 19 patients with testicular germ cell tumours, including a mixture of seminoma and non-seminomatous cases. Following consensus review by specialist uropathologists, we trained a deep learning classifier for automatic segmentation of areas suspicious for lymphovascular invasion. The classifier identified 34 areas within a validation set of 118 whole slide images from 10 patients, each of which was reviewed by three expert pathologists to form a majority consensus. The precision was 0.68 for areas which were considered to be appropriate to flag, and 0.56 for areas considered to be definite lymphovascular invasion. An artificial intelligence tool which highlights areas of possible lymphovascular invasion to reporting pathologists, who then make a final judgement on its presence or absence, has been demonstrated as feasible in this proof-of-concept study. Further development is required before clinical deployment.

Keywords: artificial intelligence; deep learning; germ cell tumours; lymphovascular invasion; testicular cancer

References

  1. Am J Surg Pathol. 2019 Dec;43(12):1711-1719 - PubMed
  2. Nat Med. 2019 Aug;25(8):1301-1309 - PubMed
  3. Blood Adv. 2020 Jul 28;4(14):3284-3294 - PubMed
  4. Lancet Digit Health. 2020 Aug;2(8):e407-e416 - PubMed
  5. Sci Rep. 2018 Feb 21;8(1):3395 - PubMed
  6. Breast Cancer Res Treat. 2019 Aug;177(1):41-52 - PubMed
  7. Histopathology. 2019 Jan;74(1):171-183 - PubMed
  8. Cancer Med. 2015 Jan;4(1):155-60 - PubMed
  9. Ann Oncol. 2014 Nov;25(11):2173-2178 - PubMed
  10. J Clin Pathol. 2015 Jun;68(6):465-72 - PubMed
  11. Am J Surg Pathol. 2018 Dec;42(12):1636-1646 - PubMed
  12. J Clin Pathol. 2019 Feb;72(2):157-164 - PubMed
  13. Eur Urol. 2014 Dec;66(6):1172-8 - PubMed
  14. Am J Surg Pathol. 2017 Jun;41(6):e22-e32 - PubMed
  15. Cell Rep. 2018 Jun 12;23(11):3392-3406 - PubMed
  16. Am J Surg Pathol. 2008 Oct;32(10):1503-12 - PubMed
  17. Gut. 2021 Mar;70(3):544-554 - PubMed
  18. Nature. 2016 Nov 30;540(7631):114-118 - PubMed
  19. J Pathol Clin Res. 2019 Apr;5(2):91-99 - PubMed
  20. Recent Pat Anticancer Drug Discov. 2019;14(1):53-59 - PubMed
  21. BJU Int. 2020 Mar;125(3):355-368 - PubMed
  22. Int J Urol. 2018 Apr;25(4):337-344 - PubMed
  23. Int J Urol. 2010 Dec;17(12):980-7 - PubMed
  24. Lancet Oncol. 2019 May;20(5):e253-e261 - PubMed
  25. Eur Respir J. 2019 Mar 28;53(3): - PubMed
  26. Mod Pathol. 2013 Apr;26(4):579-86 - PubMed
  27. JAMA. 2017 Dec 12;318(22):2199-2210 - PubMed
  28. J Clin Pathol. 2017 Dec;70(12):1010-1018 - PubMed
  29. J Clin Oncol. 2014 Dec 1;32(34):3797-800 - PubMed
  30. PLoS One. 2019 Mar 14;14(3):e0213815 - PubMed
  31. J Pathol. 2019 Oct;249(2):143-150 - PubMed
  32. J Urol. 2011 Oct;186(4):1298-302 - PubMed
  33. Nat Rev Dis Primers. 2018 Oct 5;4(1):29 - PubMed
  34. Biometrics. 1977 Mar;33(1):159-74 - PubMed
  35. J Clin Oncol. 1997 Feb;15(2):594-603 - PubMed
  36. APMIS. 2003 Jan;111(1):161-71; discussion 172-3 - PubMed
  37. Mod Pathol. 2021 Apr;34(4):834-841 - PubMed
  38. Nat Commun. 2015 Jan 22;6:5973 - PubMed
  39. Am J Clin Pathol. 2016 Mar;145(3):341-9 - PubMed

Publication Types

Grant support