Display options
Share it on

J Gerontol A Biol Sci Med Sci. 2021 Nov 15;76(12):2194-2203. doi: 10.1093/gerona/glab103.

Visual Impairment and Objectively Measured Physical Activity in Middle-Aged and Older Adults.

The journals of gerontology. Series A, Biological sciences and medical sciences

Yurun Cai, Jennifer A Schrack, Hang Wang, Jian-Yu E, Amal A Wanigatunga, Yuri Agrawal, Jacek K Urbanek, Eleanor M Simonsick, Luigi Ferrucci, Bonnielin K Swenor

Affiliations

  1. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
  2. Center on Aging and Health, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
  3. Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
  4. Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
  5. Division of Geriatric Medicine and Gerontology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
  6. Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA.

PMID: 33837407 PMCID: PMC8599058 DOI: 10.1093/gerona/glab103

Abstract

BACKGROUND: Vision loss is associated with increased risk of falls and restricted physical activity, yet the relationship between multiple vision measures and objectively measured physical activity, especially activity patterns, in mid-to-late life is not well understood.

METHOD: This study included 603 participants aged 50 years and older (mean age = 73.5) in the Baltimore Longitudinal Study of Aging who had the following assessments: presenting and best-corrected visual acuity, contrast sensitivity, visual fields, stereo acuity, and free-living physical activity using a wrist-worn ActiGraph accelerometer for 7 days. Linear regression models were used to examine the association between vision measures and daily activity counts, active minutes, and activity fragmentation (defined as an active-to-sedentary transition probability), adjusting for potential confounders. Mixed-effects models estimated differences in activity by time of day comparing those with and without each visual impairment.

RESULTS: In the fully adjusted model, worse presenting visual acuity, contrast sensitivity, and visual fields were associated with fewer activity counts, less active time, and more fragmented activity patterns (p < .05 for all). Participants with presenting or best-corrected visual acuity impairment had 19.2 and 29.3 fewer active minutes (p = .05 and p = .03, respectively) per day. Visual field impairment was associated with 268 636 fewer activity counts (p = .02), 46.2 fewer active minutes (p = .02) per day, and 3% greater activity fragmentation (p = .009). Differences in activity levels tended to be greatest from 6 am to 6 pm (p < .05).

CONCLUSIONS: Older adults with visual impairment have restricted and more fragmented patterns of daily activity. Longitudinal studies to quantify the long-term impacts of visual impairments on activity decline are warranted.

© The Author(s) 2021. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: [email protected].

Keywords: Accelerometry; Activity fragmentation; Epidemiology; Physical activity; Vision loss

References

  1. JAMA Ophthalmol. 2014 Dec;132(12):1400-6 - PubMed
  2. J Intern Med. 2020 Apr;287(4):373-394 - PubMed
  3. Am J Prev Med. 2013 Jul;45(1):29-35 - PubMed
  4. JAMA Netw Open. 2019 Oct 2;2(10):e1912352 - PubMed
  5. Invest Ophthalmol Vis Sci. 2012 Dec 03;53(13):7967-72 - PubMed
  6. Optom Vis Sci. 2008 Jun;85(6):489-97 - PubMed
  7. J Am Geriatr Soc. 2014 Aug;62(8):1540-5 - PubMed
  8. Gerontology. 2000 Nov-Dec;46(6):306-10 - PubMed
  9. J Gerontol A Biol Sci Med Sci. 2019 Aug 16;74(9):1454-1460 - PubMed
  10. BMJ Open. 2019 Apr 14;9(4):e027267 - PubMed
  11. Ophthalmology. 2003 Apr;110(4):644-50 - PubMed
  12. JAMA Intern Med. 2015 Jun;175(6):959-67 - PubMed
  13. Gerontologist. 2020 Aug 14;60(6):989-995 - PubMed
  14. Ophthalmology. 2012 Jul;119(7):1352-8 - PubMed
  15. Ophthalmology. 2015 Jun;122(6):1102-10 - PubMed
  16. Am J Ophthalmol. 1982 Jul;94(1):91-6 - PubMed
  17. Gerontologist. 2011 Dec;51(6):798-808 - PubMed
  18. BMJ Open. 2016 Aug 02;6(8):e011996 - PubMed
  19. Clin Geriatr Med. 2010 Nov;26(4):569-81 - PubMed
  20. Am Fam Physician. 2016 Aug 1;94(3):219-26 - PubMed
  21. BMJ Open Ophthalmol. 2017 Jan 3;1(1):e000046 - PubMed
  22. Eye (Lond). 2006 Mar;20(3):341-6 - PubMed
  23. J Intern Med. 2019 Aug;286(2):137-153 - PubMed
  24. J Am Geriatr Soc. 2020 Aug;68(8):1847-1851 - PubMed
  25. Ophthalmic Physiol Opt. 2011 May;31(3):283-91 - PubMed
  26. Med Sci Sports Exerc. 2016 Aug;48(8):1514-1522 - PubMed
  27. BMJ Open. 2020 Sep 3;10(9):e038386 - PubMed
  28. J Gerontol. 1994 Mar;49(2):M85-94 - PubMed
  29. Ophthalmology. 2021 Jan;128(1):70-77 - PubMed
  30. J Gerontol A Biol Sci Med Sci. 2016 Aug;71(8):1039-48 - PubMed
  31. J Gerontol A Biol Sci Med Sci. 2018 Apr 17;73(5):630-635 - PubMed
  32. BMC Geriatr. 2015 Jun 12;15:64 - PubMed
  33. J Am Geriatr Soc. 2015 Jan;63(1):46-54 - PubMed
  34. Cochrane Database Syst Rev. 2020 Sep 3;9:CD009233 - PubMed
  35. J Am Geriatr Soc. 2003 Oct;51(10):1348-55 - PubMed
  36. JAMA Ophthalmol. 2013 May;131(5):573-81 - PubMed
  37. Arch Ophthalmol. 2012 Mar;130(3):329-35 - PubMed
  38. Invest Ophthalmol Vis Sci. 2011 Sep 09;52(10):7168-74 - PubMed
  39. Invest Ophthalmol Vis Sci. 2000 Jul;41(8):2212-21 - PubMed
  40. J Gerontol A Biol Sci Med Sci. 2019 Mar 14;74(4):560-567 - PubMed
  41. J Gerontol A Biol Sci Med Sci. 2014 Aug;69(8):973-9 - PubMed
  42. Am J Epidemiol. 2014 Feb 1;179(3):313-22 - PubMed
  43. Sci Rep. 2018 Aug 13;8(1):12032 - PubMed
  44. JAMA Ophthalmol. 2018 Sep 1;136(9):989-995 - PubMed

Publication Types

Grant support