Display options
Share it on

Cancers (Basel). 2021 Mar 22;13(6). doi: 10.3390/cancers13061443.

Retargeting of NK-92 Cells against High-Risk Rhabdomyosarcomas by Means of an ERBB2 (HER2/Neu)-Specific Chimeric Antigen Receptor.

Cancers

Leonie D H Gossel, Catrin Heim, Lisa-Marie Pfeffermann, Laura M Moser, Halvard B Bönig, Thomas E Klingebiel, Peter Bader, Winfried S Wels, Michael Merker, Eva Rettinger

Affiliations

  1. Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
  2. Department of Cellular Therapeutics/Cell Processing, Institute for Transfusion Medicine and Immunohematology Frankfurt am Main, Goethe University Medical School, 60528 Frankfurt am Main, Germany.
  3. German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
  4. Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany.
  5. Universitäres Centrum für Tumorerkrankungen (UCT), 60590 Frankfurt am Main, Germany.
  6. Department of Medicine, Division of Hematology, University of Washington, Seattle, WA 98198-7720, USA.
  7. Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
  8. Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany.

PMID: 33809981 PMCID: PMC8004684 DOI: 10.3390/cancers13061443

Abstract

The dismal prognosis of pediatric and young adult patients with high-risk rhabdomyosarcoma (RMS) underscores the need for novel treatment options for this patient group. In previous studies, the tumor-associated surface antigen ERBB2 (HER2/neu) was identified as targetable in high-risk RMS. As a proof of concept, in this study, a novel treatment approach against RMS tumors using a genetically modified natural killer (NK)-92 cell line (NK-92/5.28.z) as an off-the-shelf ERBB2-chimeric antigen receptor (CAR)-engineered cell product was preclinically explored. In cytotoxicity assays, NK-92/5.28.z cells specifically recognized and efficiently eliminated RMS cell suspensions, tumor cell monolayers, and 3D tumor spheroids via the ERBB2-CAR even at effector-to-target ratios as low as 1:1. In contrast to unmodified parental NK-92 cells, which failed to lyse RMS cells, NK-92/5.28.z cells proliferated and became further activated through contact with ERBB2-positive tumor cells. Furthermore, high amounts of effector molecules, such as proinflammatory and antitumoral cytokines, were found in cocultures of NK-92/5.28.z cells with tumor cells. Taken together, our data suggest the enormous potential of this approach for improving the immunotherapy of treatment-resistant tumors, revealing the dual role of NK-92/5.28.z cells as CAR-targeted killers and modulators of endogenous adaptive immunity even in the inhibitory tumor microenvironment of high-risk RMS.

Keywords: CAR; ERBB2; HER2/neu; NK-92; RMS; cancer immunotherapy

References

  1. Cytotherapy. 2013 Dec;15(12):1563-70 - PubMed
  2. Cancer Immunol Immunother. 2018 Jan;67(1):25-38 - PubMed
  3. J Clin Oncol. 2016 Jan 10;34(2):117-22 - PubMed
  4. Methods Mol Biol. 2010;612:335-52 - PubMed
  5. Cancers (Basel). 2019 May 14;11(5): - PubMed
  6. J Clin Oncol. 2004 Dec 1;22(23):4787-94 - PubMed
  7. J Clin Oncol. 2015 May 20;33(15):1688-96 - PubMed
  8. Cancers (Basel). 2018 Dec 28;11(1): - PubMed
  9. J Clin Oncol. 2008 May 10;26(14):2384-9 - PubMed
  10. Pediatr Blood Cancer. 2017 Sep;64(9): - PubMed
  11. Oncotarget. 2017 Aug 2;8(39):66137-66153 - PubMed
  12. Sarcoma. 2015;2015:232010 - PubMed
  13. Cancer. 1995 Jan 1;75(1 Suppl):395-405 - PubMed
  14. Haematologica. 2010 Sep;95(9):1579-86 - PubMed
  15. Cancer. 2018 Aug 1;124(15):3201-3209 - PubMed
  16. Biotechnology (N Y). 1992 Oct;10(10):1128-32 - PubMed
  17. Cold Spring Harb Perspect Med. 2014 Nov 03;4(11):a025650 - PubMed
  18. J Clin Oncol. 1999 Dec;17(12):3706-19 - PubMed
  19. Children (Basel). 2018 Dec 10;5(12): - PubMed
  20. Eur J Cancer. 1998 Jun;34(7):1050-62 - PubMed
  21. Metabolism. 1986 Feb;35(2):143-6 - PubMed
  22. Cancer. 1988 Jan 15;61(2):209-20 - PubMed
  23. Int J Clin Exp Med. 2015 Oct 15;8(10):17196-205 - PubMed
  24. Cancers (Basel). 2020 Mar 31;12(4): - PubMed
  25. Oncoimmunology. 2015 Mar 19;4(7):e1014760 - PubMed
  26. Front Immunol. 2019 Nov 14;10:2683 - PubMed
  27. Cancers (Basel). 2016 Nov 24;8(12): - PubMed
  28. J Clin Oncol. 2016 Oct 10;34(29):3576-3578 - PubMed
  29. Mol Ther. 2010 Apr;18(4):843-51 - PubMed
  30. Bone Marrow Transplant. 2018 Jul;53(7):891-894 - PubMed
  31. Mod Pathol. 2006 Sep;19(9):1213-20 - PubMed
  32. Cancers (Basel). 2020 Apr 26;12(5): - PubMed
  33. N Engl J Med. 2020 Feb 6;382(6):545-553 - PubMed
  34. Surg Clin North Am. 2008 Jun;88(3):615-27, vii - PubMed
  35. Cancers (Basel). 2020 Mar 17;12(3): - PubMed
  36. Cancer. 2019 Jan 15;125(2):290-297 - PubMed
  37. J Clin Oncol. 2012 Jul 10;30(20):2457-65 - PubMed
  38. J Surg Res. 2011 Oct;170(2):e243-51 - PubMed
  39. Cancer. 2007 Nov 15;110(10):2293-303 - PubMed
  40. Cancer Discov. 2014 Feb;4(2):216-31 - PubMed
  41. Front Immunol. 2017 May 18;8:533 - PubMed
  42. J Clin Oncol. 2003 Jan 1;21(1):78-84 - PubMed
  43. Mol Ther. 2015 Feb;23(2):330-8 - PubMed
  44. Biol Blood Marrow Transplant. 2019 Apr;25(4):625-638 - PubMed
  45. J Cell Mol Med. 2016 Jul;20(7):1287-94 - PubMed
  46. Mol Ther. 2009 Oct;17(10):1779-87 - PubMed
  47. Int J Cancer. 2000 Jul 1;87(1):29-36 - PubMed
  48. Nat Commun. 2020 Jul 15;11(1):3549 - PubMed
  49. Blood. 2002 Aug 15;100(4):1265-73 - PubMed
  50. Mol Cancer Ther. 2018 Dec;17(12):2756-2766 - PubMed
  51. Cancer Immunol Immunother. 2016 Apr;65(4):485-92 - PubMed
  52. Oncologist. 2019 Dec;24(12):e1303-e1314 - PubMed
  53. J Natl Cancer Inst. 2015 Dec 06;108(5): - PubMed
  54. Cancer Res. 2003 Jun 1;63(11):2728-32 - PubMed
  55. Blood Rev. 2006 May;20(3):123-37 - PubMed
  56. Cancer Med. 2018 Sep;7(9):4509-4516 - PubMed

Publication Types