Display options
Share it on

Cancers (Basel). 2021 Mar 26;13(7). doi: 10.3390/cancers13071533.

Prospective Image Quality and Lesion Assessment in the Setting of MR-Guided Radiation Therapy of Prostate Cancer on an MR-Linac at 1.5 T: A Comparison to a Standard 3 T MRI.

Cancers

Haidara Almansour, Saif Afat, Victor Fritz, Fritz Schick, Marcel Nachbar, Daniela Thorwarth, Daniel Zips, Arndt-Christian Müller, Konstantin Nikolaou, Ahmed E Othman, Daniel Wegener

Affiliations

  1. Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, 72076 Tuebingen, Germany.
  2. Section for Experimental Radiology, Department of Radiology, Eberhard-Karls University, 72076 Tuebingen, Germany.
  3. Section for Biomedical Physics, Department of Radiation Oncology, Eberhard-Karls University, 72076 Tuebingen, Germany.
  4. German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
  5. Department of Radiation Oncology, Eberhard-Karls University, 72076 Tuebingen, Germany.
  6. Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany.

PMID: 33810410 PMCID: PMC8036991 DOI: 10.3390/cancers13071533

Abstract

The objective of this study is to conduct a qualitative and a quantitative image quality and lesion evaluation in patients undergoing MR-guided radiation therapy (MRgRT) for prostate cancer on a hybrid magnetic resonance imaging and linear accelerator system (MR-Linac or MRL) at 1.5 Tesla. This prospective study was approved by the institutional review board. A total of 13 consecutive patients with biopsy-confirmed prostate cancer and an indication for MRgRT were included. Prior to radiation therapy, each patient underwent an MR-examination on an MRL and on a standard MRI scanner at 3 Tesla (MRI

Keywords: MR-Linac; PIRADS; adaptive radiotherapy; image guidance; image quality; lesion detection; mpMRI; prostate carcinoma

References

  1. Eur J Radiol. 2017 May;90:192-197 - PubMed
  2. Magn Reson Imaging. 2012 Nov;30(9):1216-23 - PubMed
  3. Int J Radiat Oncol Biol Phys. 2018 Aug 1;101(5):1057-1060 - PubMed
  4. Strahlenther Onkol. 2001 Feb;177(2):59-73 - PubMed
  5. Adv Radiat Oncol. 2017 Mar 28;2(3):429-436 - PubMed
  6. Biometrics. 1977 Mar;33(1):159-74 - PubMed
  7. Phys Med Biol. 2017 Nov 14;62(23):L41-L50 - PubMed
  8. Radiother Oncol. 2020 Oct;151:88-94 - PubMed
  9. Magn Reson Imaging. 2015 Sep;33(7):939-49 - PubMed
  10. Radiology. 2014 Apr;271(1):143-52 - PubMed
  11. Invest Radiol. 2015 Sep;50(9):594-600 - PubMed
  12. Tutor Quant Methods Psychol. 2012;8(1):23-34 - PubMed
  13. Radiother Oncol. 2019 Apr;133:156-162 - PubMed
  14. Med Phys. 2019 Jul;46(7):3044-3054 - PubMed
  15. Invest Radiol. 2015 Nov;50(11):785-91 - PubMed
  16. AJR Am J Roentgenol. 2005 Nov;185(5):1214-20 - PubMed
  17. Front Oncol. 2020 Sep 02;10:1741 - PubMed
  18. Br J Radiol. 2019 Feb;92(1094):20180505 - PubMed
  19. Mol Oncol. 2020 Jul;14(7):1470-1491 - PubMed
  20. Z Med Phys. 2016 Jun;26(2):168-76 - PubMed
  21. Med Phys. 2018 Mar;45(3):1204-1209 - PubMed
  22. Eur Urol. 2016 Jan;69(1):16-40 - PubMed
  23. Invest Radiol. 2018 Apr;53(4):200-206 - PubMed

Publication Types

Grant support