Display options
Share it on

Glia. 2021 Aug;69(8):1916-1931. doi: 10.1002/glia.24001. Epub 2021 Apr 02.

Co-culture of exogenous oligodendrocytes with unmyelinated cerebella: Revisiting ex vivo models and new tools to study myelination.

Glia

Lucas Baudouin, Noémie Adès, Kadia Kanté, Antonny Czarnecki, Corinne Bachelin, Asha Baskaran, Dominique Langui, Aymeric Millécamps, Basile Gurchenkov, Yoan Velut, Kévin Duarte, Jean-Vianney Barnier, Brahim Nait Oumesmar, Lamia Bouslama-Oueghlani

Affiliations

  1. Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France.
  2. INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France.
  3. Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, ICM Quant, Sorbonne Université, Paris, France.
  4. Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
  5. Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, Orsay, France.

PMID: 33811384 DOI: 10.1002/glia.24001

Abstract

Common in vitro models used to study the mechanisms regulating myelination rely on co-cultures of oligodendrocyte precursor cells (OPCs) and neurons. In such models, myelination occurs in an environment that does not fully reflect cell-cell interactions and environmental cues present in vivo. To avoid these limitations while specifically manipulating oligodendroglial cells, we developed a reliable ex vivo model of myelination by seeding OPCs on cerebellar slices, deprived of their endogenous oligodendrocytes. We showed that exogenous OPCs seeded on unmyelinated cerebella, efficiently differentiate and form compact myelin. Spectral confocal reflectance microscopy and electron microscopy analysis revealed that the density of compacted myelin sheaths highly increases all along the culture. Importantly, we defined the appropriate culture time frame to study OPC differentiation and myelination, using accurate quantification resources we generated. Thus, this model is a powerful tool to study the cellular and molecular mechanisms of OPC differentiation and myelination. Moreover, it is suitable for the development and validation of new therapies for myelin-related disorders such as multiple sclerosis and psychiatric diseases.

© 2021 Wiley Periodicals LLC.

Keywords: OPCs; cerebellar organotypic cultures; myelination; oligodendrocytes

References

  1. Bechler, M. E., Byrne, L., & Ffrench-Constant, C. (2015). CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Current Biology, 25(18), 2411-2416. https://doi.org/10.1016/j.cub.2015.07.056 - PubMed
  2. Billings-Gagliardi, S., Hall, A. L., Stanhope, G. B., Altschuler, R. J., Sidman, R. L., & Wolf, M. K. (1984). Cultures of shiverer mutant cerebellum injected with normal oligodendrocytes make both normal and shiverer myelin. Proceedings of the National Academy of Sciences of the United States of America, 81(8), 2558-2561. https://doi.org/10.1073/pnas.81.8.2558 - PubMed
  3. Bin, J. M., Leong, S. Y., Bull, S. J., Antel, J. P., & Kennedy, T. E. (2012). Oligodendrocyte precursor cell transplantation into organotypic cerebellar shiverer slices: A model to study myelination and myelin maintenance. PLoS One, 7(7), e41237. https://doi.org/10.1371/journal.pone.0041237 - PubMed
  4. Blank, N. K., & Seil, F. J. (1983). Reorganization in granuloprival cerebellar cultures after transplantation of granule cells and glia. II. Ultrastructural studies. The Journal of Comparative Neurology, 214(3), 267-278. https://doi.org/10.1002/cne.902140305 - PubMed
  5. Bouslama-Oueghlani, L., Wehrle, R., Doulazmi, M., Chen, X. R., Jaudon, F., Lemaigre-Dubreuil, Y., … Dusart, I. (2012). Purkinje cell maturation participates in the control of oligodendrocyte differentiation: Role of sonic hedgehog and vitronectin. PLoS One, 7(11), e49015. https://doi.org/10.1371/journal.pone.0049015 - PubMed
  6. Bouslama-Oueghlani, L., Wehrle, R., Sotelo, C., & Dusart, I. (2003). The developmental loss of the ability of Purkinje cells to regenerate their axons occurs in the absence of myelin: An in vitro model to prevent myelination. The Journal of Neuroscience, 23(23), 8318-8329. - PubMed
  7. Bouslama-Oueghlani, L., Wehrle, R., Sotelo, C., & Dusart, I. (2005). Heterogeneity of NG2-expressing cells in the newborn mouse cerebellum. Developmental Biology, 285(2), 409-421. https://doi.org/10.1016/j.ydbio.2005.07.003 - PubMed
  8. Bu, J., Banki, A., Wu, Q., & Nishiyama, A. (2004). Increased NG2(+) glial cell proliferation and oligodendrocyte generation in the hypomyelinating mutant shiverer. Glia, 48(1), 51-63. https://doi.org/10.1002/glia.20055 - PubMed
  9. Bunge, M. B., Bunge, R. P., & Ris, H. (1961). Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. The Journal of Biophysical and Biochemical Cytology, 10, 67-94. https://doi.org/10.1083/jcb.10.1.67 - PubMed
  10. Cruz-Martinez, P., Gonzalez-Granero, S., Molina-Navarro, M. M., Pacheco-Torres, J., Garcia-Verdugo, J. M., Geijo-Barrientos, E., … Martinez, S. (2016). Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model. Cell Death & Disease, 7, e2223. https://doi.org/10.1038/cddis.2016.130 - PubMed
  11. de Faria, O., Jr., Pama, E. A. C., Evans, K., Luzhynskaya, A., & Karadottir, R. T. (2018). Neuroglial interactions underpinning myelin plasticity. Developmental Neurobiology, 78(2), 93-107. https://doi.org/10.1002/dneu.22539 - PubMed
  12. Doussau, F., Dupont, J. L., Neel, D., Schneider, A., Poulain, B., & Bossu, J. L. (2017). Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opinion on Drug Discovery, 12((10)), 1011-1022. https://doi.org/10.1080/17460441.2017.1356285 - PubMed
  13. Duncan, I. D., Marik, R. L., Broman, A. T., & Heidari, M. (2017). Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function. Proceedings of the National Academy of Sciences of the United States of America, 114(45), E9685-E9691. https://doi.org/10.1073/pnas.1714183114 - PubMed
  14. Dusart, I., Ghoumari, A., Wehrle, R., Morel, M. P., Bouslama-Oueghlani, L., Camand, E., & Sotelo, C. (2005). Cell death and axon regeneration of Purkinje cells after axotomy: Challenges of classical hypotheses of axon regeneration. Brain Research Reviews, 49(2), 300-316. https://doi.org/10.1016/j.brainresrev.2004.11.007 - PubMed
  15. Emery, B., Agalliu, D., Cahoy, J. D., Watkins, T. A., Dugas, J. C., Mulinyawe, S. B., … Barres, B. A. (2009). Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell, 138(1), 172-185. https://doi.org/10.1016/j.cell.2009.04.031 - PubMed
  16. Ferent, J., Ruat, M., & Traiffort, E. (2013). Investigation of the proteolipid protein promoter activity during demyelination and repair. Differentiation, 85(4-5), 182-189. https://doi.org/10.1016/j.diff.2013.05.002 - PubMed
  17. Ghoumari, A. M., Wehrle, R., Bernard, O., Sotelo, C., & Dusart, I. (2000). Implication of Bcl-2 and caspase-3 in age-related Purkinje cell death in murine organotypic culture: An in vitro model to study apoptosis. The European Journal of Neuroscience, 12(8), 2935-2949. https://doi.org/10.1046/j.1460-9568.2000.00186.x - PubMed
  18. Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, L. S., … Monje, M. (2014). Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science, 344(6183), 1252304. https://doi.org/10.1126/science.1252304 - PubMed
  19. Gout, O., Gansmuller, A., Baumann, N., & Gumpel, M. (1988). Remyelination by transplanted oligodendrocytes of a demyelinated lesion in the spinal cord of the adult shiverer mouse. Neuroscience Letters, 87(1-2), 195-199. https://doi.org/10.1016/0304-3940(88)90169-3 - PubMed
  20. Hill, R. A., Li, A. M., & Grutzendler, J. (2018). Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nature Neuroscience, 21(5), 683-695. https://doi.org/10.1038/s41593-018-0120-6 - PubMed
  21. Huang, J. K., Jarjour, A. A., Nait Oumesmar, B., Kerninon, C., Williams, A., Krezel, W., … Franklin, R. J. M. (2011). Retinoid X receptor gamma signaling accelerates CNS remyelination. Nature Neuroscience, 14(1), 45-53. https://doi.org/10.1038/nn.2702 - PubMed
  22. Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J., & Bergles, D. E. (2018). Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nature Neuroscience, 21(5), 696-706. https://doi.org/10.1038/s41593-018-0121-5 - PubMed
  23. Jarjour, A. A., Zhang, H., Bauer, N., Ffrench-Constant, C., & Williams, A. (2012). In vitro modeling of central nervous system myelination and remyelination. Glia, 60(1), 1-12. https://doi.org/10.1002/glia.21231 - PubMed
  24. Le Bras, B., Chatzopoulou, E., Heydon, K., Martinez, S., Ikenaka, K., Prestoz, L., … Thomas, J. L. (2005). Oligodendrocyte development in the embryonic brain: The contribution of the plp lineage. The International Journal of Developmental Biology, 49(2-3), 209-220. https://doi.org/10.1387/ijdb.041963bl - PubMed
  25. Lee, S., Leach, M. K., Redmond, S. A., Chong, S. Y., Mellon, S. H., Tuck, S. J., … Chan, J. R. (2012). A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nature Methods, 9(9), 917-922. https://doi.org/10.1038/nmeth.2105 - PubMed
  26. Maglorius Renkilaraj, M. R. L., Baudouin, L., Wells, C., Doulazmi, M., Wehrlé, R., Cannaya, V., … Bouslama-Oueghlani, L. (2017). The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation. Neurobiology of Disease, 98, 137-148. https://doi.org/10.1016/j.nbd.2016.12.004 - PubMed
  27. Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcao, A., Xiao, L., … Castelo-Branco, G. (2016). Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 352(6291), 1326-1329. https://doi.org/10.1126/science.aaf6463 - PubMed
  28. McKenzie, I. A., Ohayon, D., Li, H., de Faria, J. P., Emery, B., Tohyama, K., & Richardson, W. D. (2014). Motor skill learning requires active central myelination. Science, 346(6207), 318-322. https://doi.org/10.1126/science.1254960 - PubMed
  29. Schain, A. J., Hill, R. A., & Grutzendler, J. (2014). Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy. Nature Medicine, 20(4), 443-449. https://doi.org/10.1038/nm.3495 - PubMed
  30. Seil, F., & Blank, N. K. (1981). Myelination of central nervous system axons in tissue culture by transplanted oligodendrocytes. Science, 212(4501), 1407-1408. https://doi.org/10.1126/science.7233230 - PubMed
  31. Seil, F. J. (1987). Enhanced Purkinje cell survival in granuloprival cerebellar cultures. Brain Research, 432(2), 312-316. https://doi.org/10.1016/0165-3806(87)90057-5 - PubMed
  32. Seil, F. J. (2014). The changeable nervous system: Studies on neuroplasticity in cerebellar cultures. Neuroscience and Biobehavioral Reviews, 45, 212-232. https://doi.org/10.1016/j.neubiorev.2014.06.003 - PubMed
  33. Seil, F. J., Leiman, A. L., & Blank, N. K. (1983). Reorganization in granuloprival cerebellar cultures after transplantation of granule cells and glia. I. Light microscopic and electrophysiological studies. The Journal of Comparative Neurology, 214(3), 258-266. https://doi.org/10.1002/cne.902140304 - PubMed
  34. Stadelmann, C., Timmler, S., Barrantes-Freer, A., & Simons, M. (2019). Myelin in the central nervous system: Structure, function, and pathology. Physiological Reviews, 99(3), 1381-1431. https://doi.org/10.1152/physrev.00031.2018 - PubMed
  35. Thetiot, M., Ronzano, R., Aigrot, M. S., Lubetzki, C., & Desmazieres, A. (2019). Preparation and immunostaining of myelinating organotypic cerebellar slice cultures. Journal of Visualized Experiments, (145). https://doi.org/10.3791/59163 - PubMed
  36. Tomomura, M., Rice, D. S., Morgan, J. I., & Yuzaki, M. (2001). Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. European Journal of Neuroscience, 14(1), 57-63. https://doi.org/10.1046/j.0953-816x.2001.01624.x - PubMed
  37. Traiffort, E., Kassoussi, A., Zahaf, A., & Laouarem, Y. (2020). Astrocytes and microglia as major players of myelin production in normal and pathological conditions. Frontiers in Cellular Neuroscience, 14, 79. https://doi.org/10.3389/fncel.2020.00079 - PubMed
  38. Watkins, T. A., Emery, B., Mulinyawe, S., & Barres, B. A. (2008). Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron, 60(4), 555-569. https://doi.org/10.1016/j.neuron.2008.09.011 - PubMed
  39. Wood, P. M., & Bunge, R. P. (1986). Myelination of cultured dorsal root ganglion neurons by oligodendrocytes obtained from adult rats. Journal of the Neurological Sciences, 74(2-3), 153-169. https://doi.org/10.1016/0022-510x(86)90101-2 - PubMed
  40. Zhang, Y., Sloan, S. A., Clarke, L. E., Caneda, C., Plaza, C. A., Blumenthal, P. D., … Barres, B. A. (2016). Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron, 89(1), 37-53. https://doi.org/10.1016/j.neuron.2015.11.013 - PubMed

Publication Types

Grant support