Display options
Share it on

Chempluschem. 2021 Jun;86(6):812-819. doi: 10.1002/cplu.202100093. Epub 2021 May 06.

Cooperative Self-Assembly in Linear Chains Based on Halogen Bonds.

ChemPlusChem

Pascal Vermeeren, Lando P Wolters, Gábor Paragi, Célia Fonseca Guerra

Affiliations

  1. Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
  2. MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm tér 8, 6720, Szeged, Hungary.
  3. Institute of Physics, University of Pécs, Ifjúság útja 6, 7624, Pécs, Hungary.
  4. Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.

PMID: 33905182 PMCID: PMC8252609 DOI: 10.1002/cplu.202100093

Abstract

Cooperative properties of halogen bonds were investigated with computational experiments based on dispersion-corrected relativistic density functional theory. The bonding mechanism in linear chains of cyanogen halide (X-CN), halocyanoacetylene (X-CC-CN), and 4-halobenzonitrile (X-C

© 2021 The Authors. ChemPlusChem published by Wiley-VCH GmbH.

Keywords: MO theory; cooperativity; energy decomposition analysis; halogen bonding; non-covalent interactions

References

  1. J Chem Theory Comput. 2014 Oct 14;10(10):4432-41 - PubMed
  2. J Phys Chem A. 2013 Jul 3;117(26):5551-7 - PubMed
  3. Chemistry. 2017 Aug 1;23(43):10249-10253 - PubMed
  4. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 - PubMed
  5. Phys Chem Chem Phys. 2006 May 7;8(17):1985-93 - PubMed
  6. Chemphyschem. 2013 Feb 4;14(2):278-94 - PubMed
  7. Chem Soc Rev. 2014 Jul 21;43(14):4953-67 - PubMed
  8. J Chem Theory Comput. 2007 Mar;3(2):514-29 - PubMed
  9. J Phys Chem A. 2014 May 1;118(17):3193-200 - PubMed
  10. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 - PubMed
  11. J Comput Chem. 2004 Jan 30;25(2):189-210 - PubMed
  12. Chemistry. 2017 Mar 2;23(13):3042-3050 - PubMed
  13. Chemphyschem. 2016 Feb 16;17(4):474-80 - PubMed
  14. Phys Chem Chem Phys. 2013 Jul 21;15(27):11178-89 - PubMed
  15. Angew Chem Int Ed Engl. 2008;47(33):6114-27 - PubMed
  16. J Comput Chem. 2003 Jul 15;24(9):1142-56 - PubMed
  17. Phys Chem Chem Phys. 2018 Jan 3;20(2):905-915 - PubMed
  18. J Mol Model. 2008 Aug;14(8):659-65 - PubMed
  19. Org Biomol Chem. 2004 Nov 7;2(21):3172-8 - PubMed
  20. Chem Rev. 2016 Feb 24;116(4):2478-601 - PubMed
  21. Wiley Interdiscip Rev Comput Mol Sci. 2015 Jul;5(4):324-343 - PubMed
  22. J Comput Chem. 2011 May;32(7):1456-65 - PubMed
  23. Nat Protoc. 2020 Feb;15(2):649-667 - PubMed
  24. Chempluschem. 2021 Jun;86(6):812-819 - PubMed
  25. Chemistry. 2011 Nov 4;17(45):12612-22 - PubMed
  26. Chem Rev. 2011 Nov 9;111(11):6810-918 - PubMed
  27. Chemphyschem. 2004 Apr 19;5(4):481-7 - PubMed
  28. Chemistry. 2001 Jun 18;7(12):2511-9 - PubMed
  29. ChemistryOpen. 2015 Jun;4(3):318-27 - PubMed
  30. Phys Chem Chem Phys. 2015 Jan 21;17(3):1585-92 - PubMed
  31. ChemistryOpen. 2012 Apr;1(2):96-105 - PubMed

Publication Types

Grant support