Display options
Share it on

New Phytol. 2003 Jan;157(1):9-23. doi: 10.1046/j.1469-8137.2003.00543.x.

Signals from the cuticle affect epidermal cell differentiation.

The New phytologist

Susannah M Bird, Julie E Gray

Affiliations

  1. Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK.
  2. Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.

PMID: 33873705 DOI: 10.1046/j.1469-8137.2003.00543.x

Abstract

Studies of Arabidopsis wax biosynthesis mutants indicate that the control of cell fate in the aerial epidermis is dependant upon the synthesis of the waxy cuticle that overlies the epidermal layer. Several cer mutants, originally isolated as wax deficient, not only affect cuticular wax composition but also exhibit large increases in stomatal numbers. Stomatal numbers are also affected in hic mutant plants, but despite HIC encoding a putative wax biosynthetic enzyme the hic phenotype of increased stomatal numbers is more subtle, and only seen at elevated CO

Keywords: epidermis; guard cell; stomata; trichome; very long chain fatty acid; wax;  Cuticle

References

  1. Aarts MGM, Keijzer CJ, Stiekema WJ, Pereira A. 1995. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7: 2115-2127. - PubMed
  2. Amon A. 1996. Mother and daughter are doing fine: asymmetric cell division in yeast. Cell 84: 651-654. - PubMed
  3. Anderson CM, Wagner TA, Perret M, He Z-H, He D, Kohorn BD. 2001. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Molecular Biology 47: 197-206. - PubMed
  4. Baker EA, Hunt GM. 1986. Erosion of waxes from leaf surfaces by simulated rain. New Phytologist 102: 161-173. - PubMed
  5. Bean GJ, Marks MD, Hülskamp M, Clayton M, Croxdale JL. 2002. Tissue patterning of Arabidopsis cotyledons. New Phytologist 153: 561-467. - PubMed
  6. Berger D, Altmann T. 2000. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes and Development 14: 1119-1131. - PubMed
  7. Berger F, Linstead P, Dolan L, Haseloff J. 1998. Stomatal patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning. Developmental Biology 194: 226-234. - PubMed
  8. Boetsch J, Chin J, Croxdale J. 1995. Arrest of stomatal initials in Tradescantia is linked to the proximity of neighbouring stomata and results in the arrested initials acquiring properties of epidermal cells. Developmental Biology 168: 28-38. - PubMed
  9. Bünning E, Sagromsky H. 1948. Die Bildung des Spaltoffnungsmusters in der Blattepidermis. Naturforsch 3b: 203-216. - PubMed
  10. Carver TLW, Ingerson SM, Thomas BJ. 1996. Influences of host surface features on development of Erysiphe graminis and Erysiphe pisi. In: Kersteins G, ed. Plant cuticles, an integrated and functional approach. Oxford, UK: Bios Scientific Publishers, 33-82. - PubMed
  11. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic vegetation models. Global Change Biology 7: 357-373. - PubMed
  12. Croxdale JL. 2000. Stomatal patterning in angiosperms. American Journal of Botany 87: 1069-1080. - PubMed
  13. Dolan L. 1996. Pattern in the root epidermis: an interplay of diffusible signals and cellular geometry. Annals of Botany 77: 547-533. - PubMed
  14. Eigenbrode SD. 1996. Plant surface waxes and insect behaviour. In: Kersteins G, ed. Plant cuticles, an integrated and functional approach. Oxford, UK: Bios Scientific Publishers, 33-82. - PubMed
  15. Esau K. 1953. Plant anatomy. New York., USA: John Wiley & Sons, Inc. - PubMed
  16. Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D. 2000. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12: 2001-2008. - PubMed
  17. Franks PJ, Farquhar GD. 2001. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics and leaf gas exchange in Tradescantia virginiana. Plant Physiology 125: 935-942. - PubMed
  18. Geisler M, Nadeau J, Sack F. 2000. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12: 2075-2086. - PubMed
  19. Glover BJ. 2000. Differentiation in plant epidermal cells. Journal of Experimental Botany 51: 497-505. - PubMed
  20. Glover BJ, Perez-Rodriguez M, Martin C. 1998. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125: 3497-3508. - PubMed
  21. Gray JE, Holroyd GH, Van Der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM. 2000. The HIC signalling pathway links CO2 perception to stomatal development. Nature 408: 713-716. - PubMed
  22. Hannoufa A, McNevin J, Lemieux B. 1993. Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana. Phytochemistry 33: 851-855. - PubMed
  23. Hülskamp M, Miséra S, Jürgens G. 1994. Genetic dissection of trichome cell development in Arabidopsis. Cell 76: 555-566. - PubMed
  24. James DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK. 1995. Directed tagging of the Arabidopsis FATTY-ACID ELONGATION-1 (FAE1) gene with maize transposon activator. Plant Cell 7: 309-319. - PubMed
  25. Jan Y-N, Jan LY. 2000. Polarity in cell division: what frames thy fearful asymmetry? Cell 100: 599-602. - PubMed
  26. Jeffree CE. 1996. Structure and ontologeny of plant cuticles. In: Kersteins G, ed. Plant cuticles, an integrated and functional approach. Oxford, UK: Bios Scientific Publishers, 33-82. - PubMed
  27. Jenks MA, Rashotte AM, Tuttle HA, Feldmann KA. 1996b. Mutants in Arabidopsis thaliana altered in epicuticular wax and leaf morphology. Plant Physiology 110: 377-385. - PubMed
  28. Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA. 1995. Leaf epicuticular waxes in the eceriferum mutants in Arabidopsis. Plant Physiology 108: 369-377. - PubMed
  29. Jenks MA, Tuttle HA, Feldmann KA. 1996a. Changes in epicuticular waxes on wildtype and eceriferum mutants in Arabidopsis during development. Phytochemistry 42: 29-34. - PubMed
  30. Karabourniotis G, Tzobanoglou D, Nikolopoulos D, Liakopoulos G. 2001. Epicuticular phenolics over guard cell: Exploitation for in situ stomatal counting by fluorescence microscopy and combined image analysis. Annals of Botany 87: 631-639. - PubMed
  31. Kerstiens G. 1996a. Signalling across the divide: a wider perspective of cuticular structure-function relationships. Trends in Plant Science 1: 125-129. - PubMed
  32. Kerstiens G. 1996b. Diffusion of water vapour and gases across cuticles and through stomatal pores presumed closed. In: Kersteins G, ed. Plant cuticles, an integrated and functional approach. Oxford, UK: Bios Scientific Publishers, 33-82. - PubMed
  33. Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z, Jackson D. 2002. Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proceedings of the National Academy of Sciences, USA 99: 4103-4108. - PubMed
  34. Kolattukudy PE. 1996. Biosynthestic pathways of cutin and waxes, and their sensitivity to environmental stressed. In: Kersteins G, ed. Plant cuticles, an integrated and functional approach. Oxford, UK: Bios Scientific Publishers, 83-108. - PubMed
  35. Koornneef M, Dellaert LWM, Van Der Veen JH. 1982. EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutational Research 93: 109-123. - PubMed
  36. Koornneef M, Hanhart CJ, Thiel F. 1989. A genetic and phenotypic description of eceriferum (cer) mutants in Arabidopsis thaliana. Journal of Heredity 80: 118-122. - PubMed
  37. Kunst L, Clemens S, Hooker T. 2000. Expression of the wax-specific condensing enzyme CUT1 in Arabidopsis. Biochemical Society Transactions 28: 651-654. - PubMed
  38. Kunst L, Taylor DC, Underhill EW. 1992. Fatty-acid elongation in developing seeds of Arabidopsis-Thaliana. Plant Physiological Biochemistry 30: 425-434. - PubMed
  39. Lake JA, Quick WP, Beerling DJ, Woodward FI. 2001. Signals from mature to new leaves. Nature 411: 154-155. - PubMed
  40. Lake JA, Woodward FI, Quick WP. 2002. Long-distance CO2 signalling in plants. Journal of Experimental Botany 53: 183-193. - PubMed
  41. Larkin JC, Marks DM, Nadeau J, Sack F. 1997. Epidermal cell fate and patterning in leaves. Plant Cell 9: 1109-1120. - PubMed
  42. Larkin JC, Oppenheimer DG, Lloyd A, Paparozzi ET, Marks MD. 1994. The roles of GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell 6: 1065-1076. - PubMed
  43. Larkin JC, Oppenheimer DG, Pollock S, Marks MD. 1993. Arabidopsis GLABROUS1 gene requires downstream sequences for function. Plant Cell 5: 1739-1749. - PubMed
  44. Larkin JC, Young N, Prigge M, Marks MD. 1996. The control of trichome spacing and number in Arabidopsis. Development 122: 997-1005. - PubMed
  45. Lemieux B. 1996. Molecular genetics of epicuticular wax biosynthesis. Trends in Plant Science 1: 312-318. - PubMed
  46. Lolle SJ, Berlyn GP, Engstrom EM, Krolikowski KA, Reiter WD, Pruitt RE. 1997. Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle. Developmental Biology 189: 311-321. - PubMed
  47. Lolle SJ, Cheung AY, Sussex IM. 1992. Fiddlehead - An Arabidopsis mutant constituatively expressing and organ fusion program that involves interactions between epidermal cells. Developmental Biology 152: 383-392. - PubMed
  48. Majada JP, Sierra MI, Sanchez-Tames R. 2001. Air exchange rate affects the in vitro developed leaf cuticle of carnation. Scientia Horticulturae 87: 121-130. - PubMed
  49. Mariani C, Wolters-Arts M. 2000. Complex waxes. Plant Cell 12: 1795-1798. - PubMed
  50. Marks MD. 1997. Molecular genetic analysis of trichome development in Arabidopsis. Annual Review of Plant Physiology and Plant Molecular Biology 48: 137-163. - PubMed
  51. McElwain JC, Beerling DJ, Woodward FI. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285: 1386-1390. - PubMed
  52. Millar AA, Clemens S, Zachgo S, Giglin EM, Taylor DC, Kunst L. 1999. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11: 824-838. - PubMed
  53. Millar AA, Kunst L. 1997. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant Journal 12: 121-131. - PubMed
  54. Millar AA, Wrischer M, Kunst L. 1998. Accumulation of Very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. Plant Cell 10: 1889-1902. - PubMed
  55. Palevitz BA, Hepler PK. 1985. Changes in dye coupling of stomatal cells of Allium and Commelina by microinjection of Lucifer yellow. Physiologia Plantarum 164: 473-479. - PubMed
  56. Paliwal GS. 1967. Ontogeny of stomata in some Cruciferae. Canadian Journal of Botany 45: 495-500. - PubMed
  57. Pant DD, Kidwai PF. 1967. Development of stomata in some Cruciferae. Annals of Botany 31: 513-521. - PubMed
  58. Post-Beittenmiller D. 1996. Biochemistry and molecular biology of wax production in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47: 405-430. - PubMed
  59. Post-Beittenmiller D. 1998. The cloned ECERIFERUM genes of Arabidopsis and the corresponding GLOSSY genes of maize. Plant Physiology and Biochemistry 36: 157-166. - PubMed
  60. Preuss D, Lemieux B, Yen G, Davis RW. 1993. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes and Development 7: 974-985. - PubMed
  61. Prior SA, Pritchard SG, Runion GB, Rogers HH, Mitchell RJ. 1997. Influence of atmospheric CO2 enrichment, soil N, and water stress on needle surface wax formation in Pinus palustris (Pinaceae). American Journal of Botany 84: 1070-1077. - PubMed
  62. Pruitt RE, Vielle-Calzada J-P, Ploense SE, Grossniklaus U, Lolle SJ. 2000. FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proceedings of the National Academy of Sciences, USA 97: 1311-1316. - PubMed
  63. Quarrie SA, Jones HG. 1977. Effect of Abscisic acid and water stress on development and morphology of wheat. Journal of Experimental Botany 28: 192-203. - PubMed
  64. Rashotte AM, Jenks MA, Feldmann KA. 2001. Cuticular waxes on eceriferum mutants of Arabidopsis thaliana. Phytochemistry 57: 115-123. - PubMed
  65. Retallack GJ. 2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411: 287-290. - PubMed
  66. Riederer M, Markstädter C. 1996. Cuticular waxes: a critical assessment of current knowledge. In: Kersteins G, ed. Plant cuticles, an integrated and functional approach. Oxford, UK: Bios Scientific Publishers, 33-82. - PubMed
  67. Riederer M, Schneider G. 1990. The effect of the environment on the permeability and composition of Citrus leaf cuticles. Planta 180: 154-165. - PubMed
  68. Robbins J, Dilworth SM, Laskey RA, Dingwall C. 1991. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615-623. - PubMed
  69. Rossak M, Smith M, Kunst L. 2001. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Molecular Biology 46: 717-725. - PubMed
  70. Schnittger A, Folkers U, Schwab B, Jürgens G, Hülskamp M. 1999. Generation of a spacing pattern: The role of TRIPTYCHON in trichome patterning in Arabidopsis. Plant Cell 22: 1105-1116. - PubMed
  71. Schoch PG, Zinsou C, Sibi M. 1980. Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. Journal of Experimental Botany 31: 1211-1216. - PubMed
  72. Schreiber L, Kirsch T, Riederer M. 1996. Diffusion through cuticles: principles and models. In: Kersteins G, ed. Plant cuticles, an integrated and functional approach. Oxford, UK: Bios Scientific Publishers, 109-119. - PubMed
  73. Schreiber L, Riederer M. 1996. Determination of diffusion coefficients of octadecanoic acid in isolated cuticular waxes and their relationship to cuticular water permeabilities. Plant, Cell & Environment 19: 1075-1082. - PubMed
  74. Serna L, Fenoll C. 1997. Tracing the ontogeny of stomatal clusters in Arabidopsis with molecular markers. Plant Journal 12: 747-755. - PubMed
  75. Serna L, Fenoll C. 2000a. Stomatal development and patterning in Arabidopsis leaves. Physiologia Plantarum 109: 351-358. - PubMed
  76. Serna L, Fenoll C. 2000b. Plant biology - Coping with human CO2 emissions. Nature 408: 656-657. - PubMed
  77. Shepherd T, Robertson GW, Griffiths DW, Birch ANE. 1997. Effects of environment on the composition of epicuticular wax esters from kale and swede. Phytochemistry 46: 83-96. - PubMed
  78. Shepherd T, Robertson GW, Griffiths DW, Birch ANE, Duncan D. 1995. Effects of environment on the composition of epicuticular wax from kale and swede. Phytochemistry 40: 407-417. - PubMed
  79. Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Métraux J, Nawrath C. 2000. Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12: 721-737. - PubMed
  80. Todd J, Post-Beittenmiller D, Jaworski JG. 1999. KCS1 encodes a fatty acid elongase 3-keto acyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant Journal 17: 119-130. - PubMed
  81. Vogelmann TC. 1993. Plant tissue optics. Annual Review of Plant Physiology and Plant Molecular Biology 44: 231-251. - PubMed
  82. Walker GP. 1988. The role of leaf cuticle in leaf age preference by Bayberry Whitefly (Homoptera: Aleyrodidae) on lemon. Entomolecular Society of America 81: 365-369. - PubMed
  83. Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A. 2001. Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid p-hydroxylation in development. Proceedings of the National Academy of Sciences, USA 98: 9694-9699. - PubMed
  84. Wolters-Arts M, Lush WM, Mariani C. 1998. Lipids are required for direction pollen-tube growth. Nature 392: 818-821. - PubMed
  85. Woodward FI. 1987. Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327: 617-618. - PubMed
  86. Woodward FI, Kelly CK. 1995. The influence of CO2 concentration on stomatal density. New Phytologist 131: 311-327. - PubMed
  87. Xia Y, Nikolau BJ, Schnable PS. 1997. Developmental and hormonal regulation of the arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiology 115: 925-937. - PubMed
  88. Yang M, Sack FD. 1995. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7: 2227-2239. - PubMed
  89. Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H. 1999. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11: 2187-2201. - PubMed
  90. Zambryski P, Crawford K. 2000. Plasmodesmata: Gatekeepers for cell-to-cell transport of developmental signals in plants. Annual Review of Cell Developmental Biology 16: 393-421. - PubMed
  91. Zeiger E, Stebbins L. 1972. Developmental genetics in barley: a mutant for stomatal development. American Journal of Botany 59: 143-148. - PubMed

Publication Types