Display options
Share it on

Front Cell Neurosci. 2021 Apr 15;15:658244. doi: 10.3389/fncel.2021.658244. eCollection 2021.

Striatal Dopamine Transporter Function Is Facilitated by Converging Biology of α-Synuclein and Cholesterol.

Frontiers in cellular neuroscience

Sarah Threlfell, Amir Saeid Mohammadi, Brent J Ryan, Natalie Connor-Robson, Nicola J Platt, Rishi Anand, Florence Serres, Trevor Sharp, Nora Bengoa-Vergniory, Richard Wade-Martins, Andrew Ewing, Stephanie J Cragg, Katherine R Brimblecombe

Affiliations

  1. Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
  2. Oxford Parkinson's Disease Centre, Medical Sciences Division, University of Oxford, Oxford, United Kingdom.
  3. Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  4. University Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
  5. Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.

PMID: 33935654 PMCID: PMC8081845 DOI: 10.3389/fncel.2021.658244

Abstract

Striatal dopamine transporters (DAT) powerfully regulate dopamine signaling, and can contribute risk to degeneration in Parkinson's disease (PD). DATs can interact with the neuronal protein α-synuclein, which is associated with the etiology and molecular pathology of idiopathic and familial PD. Here, we tested whether DAT function in governing dopamine (DA) uptake and release is modified in a human-α-synuclein-overexpressing (

Copyright © 2021 Threlfell, Mohammadi, Ryan, Connor-Robson, Platt, Anand, Serres, Sharp, Bengoa-Vergniory, Wade-Martins, Ewing, Cragg and Brimblecombe.

Keywords: Parkinson’s disease; alpha-synuclein (SNCA); cholesteroI; dopamine transporter (DAT); dopamine uptake; early stage parkinsonism; galactoceramide; striatum

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. J Neurosci. 2010 Mar 3;30(9):3398-408 - PubMed
  2. Front Neurosci. 2018 Mar 14;12:161 - PubMed
  3. Trends Neurosci. 2004 May;27(5):270-7 - PubMed
  4. PLoS One. 2011;6(12):e27959 - PubMed
  5. J Neurochem. 2018 Jan;144(2):162-171 - PubMed
  6. J Neurochem. 2007 Apr;101(1):132-41 - PubMed
  7. J Biol Chem. 2010 Oct 15;285(42):32616-26 - PubMed
  8. Basal Ganglia. 2016 Aug;6(3):123-148 - PubMed
  9. J Physiol. 2014 Aug 15;592(16):3559-76 - PubMed
  10. Nat Commun. 2020 Sep 28;11(1):4885 - PubMed
  11. Neurochem Int. 2006 Apr;48(5):329-40 - PubMed
  12. Front Comput Neurosci. 2013 Mar 18;7:13 - PubMed
  13. Trends Pharmacol Sci. 1999 Oct;20(10):424-9 - PubMed
  14. J Neurosci. 2014 Aug 6;34(32):10603-15 - PubMed
  15. FASEB J. 2001 Apr;15(6):916-26 - PubMed
  16. Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):E4016-25 - PubMed
  17. Environ Health Perspect. 2009 Jun;117(6):964-9 - PubMed
  18. Science. 2003 Oct 31;302(5646):841 - PubMed
  19. Anal Chem. 2018 Jul 17;90(14):8509-8516 - PubMed
  20. J Biol Chem. 2011 Dec 23;286(51):43933-43943 - PubMed
  21. Nat Commun. 2013;4:2720 - PubMed
  22. Trends Pharmacol Sci. 2013 Sep;34(9):489-96 - PubMed
  23. Nat Commun. 2019 Sep 19;10(1):4263 - PubMed
  24. Cell Rep. 2012 Jul 26;2(1):33-41 - PubMed
  25. J Neurosci. 1997 Feb 1;17(3):960-74 - PubMed
  26. Neurosci Lett. 2003 Apr 17;340(3):189-92 - PubMed
  27. Neuron. 2012 Jul 12;75(1):58-64 - PubMed
  28. J Nucl Med. 2009 Jan;50(1):45-52 - PubMed
  29. Front Cell Neurosci. 2019 May 01;13:175 - PubMed
  30. Front Neurosci. 2020 Jan 29;14:18 - PubMed
  31. Molecules. 2017 Oct 19;22(10): - PubMed
  32. Neuropharmacology. 2018 May 1;133:289-306 - PubMed
  33. Nat Neurosci. 2004 Jun;7(6):583-4 - PubMed
  34. Acta Neuropathol Commun. 2014 Oct 29;2:150 - PubMed
  35. Neuron. 2000 Jan;25(1):239-52 - PubMed
  36. Cell Calcium. 2015 Nov;58(5):457-66 - PubMed
  37. Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1931-6 - PubMed
  38. Neurobiol Dis. 2015 Feb;74:66-75 - PubMed
  39. J Neurochem. 2012 Dec;123(5):700-15 - PubMed
  40. Eur J Neurosci. 2008 Feb;27(4):947-57 - PubMed
  41. J Phys Chem B. 2017 Apr 20;121(15):3657-3666 - PubMed
  42. J Neurosci. 2006 Mar 22;26(12):3206-9 - PubMed
  43. Brain Res. 2011 Mar 25;1382:37-44 - PubMed
  44. J Parkinsons Dis. 2017;7(3):433-450 - PubMed
  45. Front Neurosci. 2019 Apr 11;13:328 - PubMed
  46. Neurobiol Aging. 2017 Mar;51:54-66 - PubMed
  47. Genesis. 2006 Aug;44(8):383-90 - PubMed
  48. Neuropharmacology. 2007 Jun;52(8):1596-605 - PubMed
  49. Trends Neurosci. 2007 May;30(5):244-50 - PubMed
  50. Acta Neuropathol. 2019 Nov;138(5):681-704 - PubMed
  51. Semin Cell Dev Biol. 2021 Apr;112:123-136 - PubMed
  52. J Neurosci. 2018 Jan 10;38(2):484-497 - PubMed
  53. FEBS J. 2018 Oct;285(19):3657-3668 - PubMed
  54. J Neurosci. 2020 Nov 4;40(45):8767-8779 - PubMed
  55. ACS Chem Neurosci. 2019 Aug 21;10(8):3419-3426 - PubMed
  56. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3213-9 - PubMed
  57. J Neurosci. 2010 Jul 21;30(29):9762-70 - PubMed
  58. Neuron. 2009 Apr 30;62(2):218-29 - PubMed

Publication Types