Display options
Share it on

Glob Chang Biol. 2021 Aug;27(16):3699-3717. doi: 10.1111/gcb.15662. Epub 2021 May 18.

Integrating resilience with functional ecosystem measures: A novel paradigm for management decisions under multiple-stressor interplay in freshwater ecosystems.

Global change biology

Deepa Jaiswal, Usha Pandey, Vibha Mishra, Jitendra Pandey

Affiliations

  1. Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India.
  2. Department of Botany, Faculty of Science and Technology, Mahatma Gandhi Kashividyapith University, Varanasi, India.
  3. Department of Chemistry, Maulana Azad Institute of Humanity, Science and Technology, Sitapur, India.

PMID: 33915017 DOI: 10.1111/gcb.15662

Abstract

Moving beyond monitoring the state of water quality to understanding how the sensitive ecosystems "respond" to complex interplay of climatic and anthropogenic perturbations, and eventually the mechanisms that underpin alterations leading to transitional shifts is crucial for managing freshwater resources. The multiple disturbance dynamics-a single disturbance as opposed to multiple disturbances for recovery and other atrocities-alter aquatic ecosystem in multiple ways, yet the global models lack representation of key processes and feedbacks, impeding potential management decisions. Here, the procedure we have embarked for what is known about the biogeochemical and ecological functions in freshwaters in context of ecosystem resilience, feedbacks, stressors synergies, and compensatory dynamics, is highly relevant for process-based ecosystem models and for developing a novel paradigm toward potential management decisions. This review advocates the need for a more aggressive approach with improved understanding of changes in key ecosystem processes and mechanistic links thereof, regulating resilience and compensatory dynamics concordant with climate and anthropogenic perturbations across a wide range of spatio-temporal scales. This has relevance contexting climate change and anthropogenic pressures for developing proactive and adaptive management strategies for safeguarding freshwater resources and services they provide.

© 2021 John Wiley & Sons Ltd.

Keywords: climate change; compensatory dynamics; disturbance dynamics; ecosystem feedback; freshwater resources; resilience; response diversity; stressors synergies

References

  1. Adrian, L., Szewzyk, U., Wecke, J., & Görisch, H. (2000). Bacterial dehalo-respiration with chlorinated benzenes. Nature, 408, 580-583. https://doi.org/10.1038/35046063 - PubMed
  2. Alexander, R. B., Smith, R. A., & Schwarz, G. (2000). Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature, 403, 758-761. https://doi.org/10.1038/35001562 - PubMed
  3. Anderson, C. N. K., Hsieh, C., Sandin, S. A., Hewitt, R., Hollowed, A., Beddington, J., May, R. M., & Sugihara, G. (2008). Why fishing magnifies fluctuations in fish abundance? Nature, 452, 835-839. https://doi.org/10.1038/nature06851 - PubMed
  4. Angermeier, P. L., & Winston, M. R. (1998). Local vs. regional influences on local diversity in stream fish communities of Virginia. Ecology, 79(3), 911-927. https://doi.org/10.1890/0012-9658(1998)079[0911:LVRIOL]2.0.CO;2 - PubMed
  5. Barmuta, L. A. (1989). Habitat patchiness and macrobenthic community structure in an upland stream in temperate Victoria, Australia. Freshwater Biology, 21(2), 223-236. https://doi.org/10.1111/j.1365-2427.1989.tb01361.x - PubMed
  6. Bayley, S. E., Creed, I. F., Sass, G. Z., & Wong, A. S. (2007). Frequent regime shifts in trophic states in shallow lakes on the Boreal Plain: Alternative" unstable" states? Limnology and Oceanography, 52(5), 2002-2012. https://doi.org/10.4319/lo.2007.52.5.2002 - PubMed
  7. Belletti, B., de Leaniz, C. G., Jones, J., Bizzi, S., Börger, L., Segura, G., Castelletti, A., Van de Bund, W., Aarestrup, K., Barry, J., & Belka, K. (2020). More than one million barriers fragment Europe's rivers. Nature, 588(7838), 436-441. https://doi.org/10.1038/s41586-020-3005-2 - PubMed
  8. Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429(6994), 827-833. https://doi.org/10.1038/nature02691 - PubMed
  9. Beman, J. M., Arrigo, K. R., & Matson, P. A. (2005). Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature, 434, 211-214. https://doi.org/10.1038/nature03370 - PubMed
  10. Berglund, O. (2003). Periphyton density influences organochlorine accumulation in rivers. Limnology and Oceanography, 48, 2106-2116. https://doi.org/10.4319/lo.2003.48.6.2106 - PubMed
  11. Biggs, B. J. F., Francoeur, S. N., Huryn, A. D., Young, R., Arbuckle, C. J., & Townsend, C. R. (2000). Trophic cascades in streams: effects of nutrient enrichment on autotrophic and consumer benthic communities under two different fish predation regimes. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1380-1394. https://doi.org/10.1139/cjfas-57-7-1380 - PubMed
  12. Brewer, P. G., & Peltzer, E. T. (2009). Limits to marine life. Science, 324(5925), 347-348. https://doi.org/10.1126/science.1170756 - PubMed
  13. Butler, N. M., Suttle, C. A., & Nei, W. E. (1989). Discrimination by freshwater zooplankton between single algal cells differing in nutritional status. Oecologia, 78, 368-372. https://doi.org/10.1007/BF00379111 - PubMed
  14. Caraco, N. F., Cole, J. J., Raymond, P. A., Strayer, D. L., Pace, M. L., Findlay, S. E. G., & Fischer, D. T. (1997). Zebra mussel invasion in a large, turbid river: Phytoplankton response to increased grazing. Ecology, 78(2), 588-602. https://doi.org/10.1890/0012-9658(1997)078[0588:ZMIIAL]2.0.CO;2 - PubMed
  15. Cardinale, B. J. (2011). Biodiversity improves water quality through niche partitioning. Nature, 472, 86-89. https://doi.org/10.1038/nature09904 - PubMed
  16. Carpenter, S. R. (1992). Destabilization of planktonic ecosystems and blooms of blue-green algae. In J. F. Kitchell (Ed.), Food web management: A case study of Lake Mendota (pp. 461-482). Springer-Verlag. - PubMed
  17. Carpenter, S. R. (2003). Regime shifts in lake ecosystems: Pattern and variation. International Ecology Institute. - PubMed
  18. Carpenter, S. R. (2005). Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10002-10005. https://doi.org/10.1073/pnas.0503959102 - PubMed
  19. Carpenter, S. R., Booth, E. G., Kucharik, C. J., & Lathrop, R. C. (2015). Extreme daily loads: Role in annual phosphorus input to a north temperate lake. Aquatic Sciences, 77(1), 71-79. https://doi.org/10.1007/s00027-014-0364-5 - PubMed
  20. Carpenter, S. R., & Brock, W. A. (2006). Rising variance: A leading indicator of ecological transition. Ecology Letters, 9, 311-318. https://doi.org/10.1111/j.1461-0248.2005.00877.x - PubMed
  21. Carpenter, S. R., Cole, J. J., Hodgson, J. R., Kitchell, J. F., Pace, M. L., Bade, D., Cottingham, K. L., Essington, T. E., & Houser, J. N. (2001). Trophic cascades, nutrients, and lake productivity: Whole-lake experiments. Ecological Monographs, 71(2), 163-186. https://doi.org/10.2307/2657215 - PubMed
  22. Carpenter, S. R., Cole, J. J., Pace, M. L., & Wilkinson, G. M. (2016). Response of plankton to nutrients, planktivory and terrestrial organic matter: A model analysis of whole-lake experiments. Ecology Letters, 19(3), 230-239. https://doi.org/10.1111/ele.12558 - PubMed
  23. Carpenter, S. R., & Kitchell, J. F. (1988). Consumer control of lake productivity. BioScience, 38, 764-769. https://doi.org/10.2307/1310785 - PubMed
  24. Carpenter, S. R., Ludwig, D., & Brock, W. A. (1999). Management of eutrophication for lakes subject to potentially irreversible change. Ecological Applications, 9(3), 751-771. https://doi.org/10.2307/2641327 - PubMed
  25. Carrara, F., Altermatt, F., Rodriguez-Iturbe, I., & Rinaldo, A. (2012). Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5761-5766. https://doi.org/10.1073/pnas.1119651109 - PubMed
  26. Carroll, R. W. H., Warwick, J. J., Heim, K. J., Bonzongo, J. C., Miller, J. R., & Lyons, W. B. (2000). Simulation of mercury transport and fate in the Carson River, Nevada. Ecological Modelling, 125, 255-278. https://doi.org/10.1016/S0304-3800(99)00186-6 - PubMed
  27. Central Pollution Control Board (CPCB). (2013). Pollution assessment: River Ganga. Ministry of Environment and Forests, Govt. of India, Parivesh Bhawan. - PubMed
  28. Cernansky, R. (2017). Biodiversity moves beyond counting species. Nature News, 546(7656), 22-24. https://doi.org/10.1038/546022a - PubMed
  29. Chapin III, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., & Laundre, J. A. (1995). Responses of Arctic tundra to experimental and observed changes in climate. Ecology, 76(3), 694-711. https://doi.org/10.2307/1939337 - PubMed
  30. Chapin, F. S., Walker, B. H., Hobbs, R. J., Hooper, D. U., Lawton, J. H., Sala, O. E., & Tilman, D. (1997). Biotic control over the functioning of ecosystems. Science, 277(5325), 500-504. https://doi.org/10.1126/science.277.5325.500 - PubMed
  31. Chapin III, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., & Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405, 234-242. https://doi.org/10.1038/35012241 - PubMed
  32. Chen, C. T., & Kandasamy, S. (2008). Evaluation of elemental enrichments in surface sediments off southwestern Taiwan. Environmental Geology, 54(6), 1333-1346. https://doi.org/10.1007/s00254-007-0916-2 - PubMed
  33. Chen, G. H., Leong, I. M., Liu, J., Huang, J. C., Lo, I. M. C., & Yen, B. C. (2000). Oxygen deficit determinations for a major river in eastern Hong Kong, China. Chemosphere, 41, 7-13. https://doi.org/10.1016/S0045-6535(99)00384-7 - PubMed
  34. Chen, M., Ding, S., Chen, X., Sun, Q., Fan, X., Lin, J., Ren, M., Yang, L., & Zhang, C. (2018). Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Water Research, 133, 153-164. https://doi.org/10.1016/j.watres.2018.01.040 - PubMed
  35. Chen, Q., Jingan, C., Jingfu, W., Jianyang, G., Zuxue, J., Pingping, Y., & Zhenzhen, M. (2019). In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China. Science of the Total Environment, 666, 39-45. https://doi.org/10.1016/j.scitotenv.2019.02.194 - PubMed
  36. Chisholm, R. A., & Filotas, E. (2009). Critical slowing down as an indicator of transitions in two-species models. Journal of Theoretical Biology, 257, 142-149. https://doi.org/10.1016/j.jtbi.2008.11.008 - PubMed
  37. Conley, D. J., & Josefson, A. B. (2001). Hypoxia, nutrient management and restoration in Danish waters. In N. N. Rabalais & R. E. Turner (Eds.), Coastal Hypoxia consequences for living resources and ecosystems (pp. 425-434). Coastal and estuarine studies 58. American Geophysical Union. - PubMed
  38. Dai, L., Korolev, K. S., & Gore, J. (2013). Slower recovery in space before collapse of connected populations. Nature, 496(7445), 355-358. https://doi.org/10.1038/nature12071 - PubMed
  39. Dangles, O., & Guérold, F. (1999). Impact of headwater stream acidification on the trophic structure of macroinvertebrate communities. International Review of Hydrobiology, 84(3), 287-297. https://doi.org/10.1002/iroh.199900029 - PubMed
  40. Death, R. G. (1996). The effect of patch disturbance on stream invertebrate community structure: The influence of disturbance history. Oecologia, 108(3), 567-576. https://doi.org/10.1007/BF00333735 - PubMed
  41. Diaz, R. J., & Rosenberg, R. (1995). Marine benthic hypoxia: A review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanography and Marine Biology: An Annual Review, 33, 245-303. - PubMed
  42. Diaz, S., Symstad, A. J., Chapin, F. S., Wardle, D. A., & Huenneke, L. F. (2003). Functional diversity revealed by removal experiments. Trends in Ecology & Evolution, 18(3), 140-146. https://doi.org/10.1016/S0169-5347(03)00007-7 - PubMed
  43. Doeg, T. J., Lake, P. S., & Marchant, R. (1989). Colonization of experimentally disturbed patches by stream macroinvertebrates in the Acheron River, Victoria. Australian Journal of Ecology, 14(2), 207-220. https://doi.org/10.1111/j.1442-9993.1989.tb01428.x - PubMed
  44. Doherty, M., Yager, P. L., Moran, M. A., Coles, V. J., Fortunato, C. S., Krusche, A. V., Medeiros, P. M., Payet, J. P., Richey, J. E., Satinsky, B. M., Sawakuchi, H. O., Ward, N. D., & Crump, B. C. (2017). Bacterial biogeography across the Amazon River-ocean continuum. Frontiers in Microbiology, 8, 882. https://doi.org/10.3389/fmicb.2017.00882 - PubMed
  45. Dole-Olivier, M. J., Marmonier, P., & Beffy, J. L. (1997). Response of invertebrates to lotic disturbance: Is the hyporheic zone a patchy refugium? Freshwater Biology, 37(2), 257-276. https://doi.org/10.1046/j.1365-2427.1997.00140.x - PubMed
  46. Donner, S. D., Coe, M. T., Lenters, J. D., Twine, T. E., & Foley, J. A. (2002). Modeling the impact of hydrological changes on nitrate transport in the Mississippi River basin from 1955 to 1994. Global Biogeochemical Cycles, 16, 1043. https://doi.org/10.1029/2001GB001396 - PubMed
  47. Downes, B. J., Lake, P. S., Glaister, A., & Webb, J. A. (1998). Scales and frequencies of disturbances: Rock size, bed packing and variation among upland streams. Freshwater Biology, 40(4), 625-639. https://doi.org/10.1046/j.1365-2427.1998.00360.x - PubMed
  48. Downes, B. J., Lake, P. S., Schreiber, E. S. G., & Glaister, A. (1998). Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs, 68(2), 237-257. https://doi.org/10.1890/0012-9615(1998)068[0237:HSAROL]2.0.CO;2 - PubMed
  49. Dwivedi, S., Mishra, S., & Tripathi, R. D. (2018). Ganga water pollution: A potential health threat to inhabitants of Ganga basin. Environment International, 117, 327-338. https://doi.org/10.1016/j.envint.2018.05.015 - PubMed
  50. Eby, L. A., & Crowder, L. B. (2002). Hypoxia-based habitat compression in the Neuse River estuary Context-dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences, 59, 952-965. https://doi.org/10.1139/f02-067 - PubMed
  51. Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., & Norberg, J. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1(9), 488-494. https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2 - PubMed
  52. Elser, J. J., Andersen, T., Baron, J. S., Bergstrom, A.-K., Jansson, M., Kyle, M., Nydick, K. R., Steger, L., & Hessen, D. O. (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954), 835-837. https://doi.org/10.1126/science.1176199 - PubMed
  53. Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., & Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135-1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x - PubMed
  54. Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S. S., McCauley, E., Schulz, K. L., Siemann, E. H., & Sterner, R. W. (2000). Nutritional constraints in terrestrial and freshwater foodwebs. Nature, 408, 578-580. https://doi.org/10.1038/35046058 - PubMed
  55. Elser, J. J., Sterner, R. W., Galford, A. E., Chrzanowski, T. H., Findlay, D. L., Mills, K. H., Paterson, M. J., Stainton, M. P., & Schindler, D. W. (2000). Pelagic C:N:P stoichiometry in a eutrophied lake: Responses to a whole-lake food-web manipulation. Ecosystems, 3, 293-307. https://doi.org/10.1007/s100210000027 - PubMed
  56. Elser, J. J., & Urabe, J. (1999). The stoichiometry of consumer-driven nutrient recycling: Theory, observations, and consequences. Ecology, 80(3), 735-751. https://doi.org/10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2 - PubMed
  57. Evans, C. D., Chapman, P. J., Clark, J. M., Monteith, D. T., & Cresser, M. S. (2006). Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biology, 12(11), 2044-2053. https://doi.org/10.1111/j.1365-2486.2006.01241.x - PubMed
  58. Farjalla, V. F., Esteves, F. A., Bozelli, R. L., & Roland, F. (2002). Nutrient limitation of bacterial production in clear water Amazonian ecosystems. Hydrobiologia, 489, 197-205. - PubMed
  59. Farrell, A. P., Hinch, S. G., Cooke, S. J., Patterson, D. A., Crossin, G. T., Lapointe, M., & Mathes, M. T. (2008). Pacific salmon in hot water: Applying aerobic scope models and biotelemetry to predict the success of spawning migrations. Physiological and Biochemical Zoology, 81(6), 697-708. https://doi.org/10.1086/592057 - PubMed
  60. Finlay, J. C., Small, G. E., & Sterner, R. W. (2013). Human influences on nitrogen removal in lakes. Science, 342(6155), 247-250. https://doi.org/10.1126/science.1242575 - PubMed
  61. Folke, C. (2006). Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environmental Change, 16, 253-267. https://doi.org/10.1016/j.gloenvcha.2006.04.002 - PubMed
  62. Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., & Walker, B. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio, 31(5), 437-440. https://doi.org/10.1579/0044-7447-31.5.437 - PubMed
  63. Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics, 35, 557-581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 - PubMed
  64. Freixa, A., Ejarque, E., Crognale, S., Amalfitano, S., Fazi, S., Butturini, A., & Romaní, A. M. (2016). Sediment microbial communities rely on different dissolved organic matter sources along a Mediterranean river continuum. Limnology and Oceanography, 61(4), 1389-1405. https://doi.org/10.1002/lno.10308 - PubMed
  65. Frost, T. M., Carpenter, S. R., Ives, A. R., & Kratz, T. K. (1995). Species compensation and complementarity in ecosystem function. In C. G. Jones & J. H. Lawton (Eds.), Linking species and ecosystems (pp. 224-235). Chapman & Hall. - PubMed
  66. Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., Zhao, D., An, S., & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, 102-109. https://doi.org/10.1016/j.jhazmat.2014.01.044 - PubMed
  67. Fuller, M. R., Doyle, M. W., & Strayer, D. L. (2015). Causes and consequences of habitat fragmentation in river networks. Annals of the New York Academy of Sciences, 1355(1), 31-51. https://doi.org/10.1111/nyas.12853 - PubMed
  68. Gal, G., & Anderson, W. (2010). A novel approach to detecting a regime shift in a lake ecosystem. Methods in Ecology and Evolution, 1, 45-52. https://doi.org/10.1111/j.2041-210X.2009.00006.x - PubMed
  69. Genkai-Kato, M., & Carpenter, S. R. (2005). Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology, 86(1), 210-219. https://doi.org/10.1890/03-0545 - PubMed
  70. Gilbert, D., Sundby, B., Gobeil, C., Mucci, A., & Tremblay, G. H. (2005). A seventy two year record of diminishing deep water oxygen in the St. Lawrence estuary: The Northwest Atlantic connection. Limnology and Oceanography, 50, 1654-1666. https://doi.org/10.4319/lo.2005.50.5.1654 - PubMed
  71. Grimes, C. B. (2001). Fishery production and the Mississippi River discharge. Fisheries, 26, 17-26. https://doi.org/10.1577/1548-8446(2001)026<0017:FPATMR>2.0.CO;2 - PubMed
  72. Grimm, N. B., & Fisher, S. G. (1992). Responses of arid-land streams to changing climate. In P. Firth & S. G. Fisher (Eds.), Global climate change and freshwater ecosystems (pp. 211-233). Springer. - PubMed
  73. Groffman, P. M., Baron, J. S., Blett, T., Gold, A. J., Goodman, I., Gunderson, L. H., Levinson, B. M., Palmer, M. A., Paerl, H. W., Peterson, G. D., Poff, N. L. R., Rejeski, D. W., Reynolds, J. F., Turner, M. G., Weathers, K. C., & Wiens, J. (2006). Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems, 9, 1-13. https://doi.org/10.1007/s10021-003-0142-z - PubMed
  74. Gunderson, L. H. (2000). Ecological resilience - In theory and application. Annual Review of Ecology and Systematics, 31(1), 425-439. https://doi.org/10.1146/annurev.ecolsys.31.1.425 - PubMed
  75. Gunderson, L. H., Holling, C. S., & Light, S. S. (1995). Barriers and bridges to the renewal of ecosystems and institutions. Columbia University Press, 593 pp. - PubMed
  76. Gunnars, A., & Blomqvist, S. (1997). Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions: An experimental comparison of freshwater and brackish-marine systems. Biogeochemistry, 37(3), 203-226. - PubMed
  77. Guttal, V., & Jayaprakash, C. (2008). Changing skewness: An early warning signal of regime shifts in ecosystems. Ecology Letters, 11, 450-460. https://doi.org/10.1111/j.1461-0248.2008.01160.x - PubMed
  78. Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., & Watson, R. (2008). A global map of human impact on marine ecosystems. Science, 319, 948-952. https://doi.org/10.1126/science.1149345 - PubMed
  79. Hargeby, A., Blindow, I., & Andersson, G. (2007). Long-term patterns of shifts between clear and turbid states in Lake Krankesjön and Lake Tåkern. Ecosystems, 10, 29-36. https://doi.org/10.1007/s10021-006-9008-5 - PubMed
  80. Harvey, E., & Altermatt, F. (2019). Regulation of the functional structure of aquatic communities across spatial scales in a major river network. Ecology, 100(4), e02633. https://doi.org/10.1002/ecy.2633 - PubMed
  81. Harvey, E., Gounand, I., Ward, C. L., & Altermatt, F. (2017). Bridging ecology and conservation: From ecological networks to ecosystem function. Journal of Applied Ecology, 54(2), 371-379. https://doi.org/10.1111/1365-2664.12769 - PubMed
  82. Harvey, E., & MacDougall, A. S. (2014). Trophic island biogeography drives spatial divergence of community establishment. Ecology, 95(10), 2870-2878. https://doi.org/10.1890/13-1683.1 - PubMed
  83. Henry, L. M., Kennedy, R., & Keegan, B. F. (2008). An investigation of periodic hypoxia at Ardbear Salt Lake. Journal of the Marine Biological Association of the United Kingdom, 88, 1297-1307. https://doi.org/10.1017/S0025315408001914 - PubMed
  84. Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, K. L., Gonzalez, A., Duffy, J. E., Gamfeldt, L., & O'Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486(7401), 105-108. https://doi.org/10.1038/nature11118 - PubMed
  85. Howarth, R. W., Swaney, D. P., Butler, T. J., & Marino, R. (2000). Climate control on eutrophication of the Hudson River estuary. Ecosystems, 3(2), 210-215. - PubMed
  86. Hsieh, C., Glaser, S. M., Lucas, A. J., & Sugihara, G. (2005). Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature, 435, 336-340. https://doi.org/10.1038/nature03553 - PubMed
  87. Hu, W. F., Lo, W., Chua, H., Sin, S. N., & Yu, P. H. F. (2001). Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong. Environment International, 26, 369-375. https://doi.org/10.1016/S0160-4120(01)00014-9 - PubMed
  88. Huang, L., Pu, X., Pan, J. F., & Wang, B. (2013). Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea. Chemosphere, 93, 1957-1964. https://doi.org/10.1016/j.chemosphere.2013.06.080 - PubMed
  89. Hughes, T. P., Bellwood, D. R., Folke, C., Steneck, R. S., & Wilson, J. (2005). New paradigms for supporting the resilience of marine ecosystems. Trends in Ecology & Evolution, 20(7), 380-386. https://doi.org/10.1016/j.tree.2005.03.022 - PubMed
  90. Humborg, C., Ittekkot, V., Cociasu, A., & Bodungen, B. V. (1997). Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386, 385-388. https://doi.org/10.1038/386385a0 - PubMed
  91. Ibelings, B. W., Portielje, R., Lammens, E. H. R. R., Noordhuis, R., van den Berg, M. S., Joosse, W., & Meijer, M. L. (2007). Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems, 10, 4-16. https://doi.org/10.1007/s10021-006-9009-4 - PubMed
  92. Isbella, F., Reichb, P. B., Tilmana, D., Hobbiea, S. E., Polaskya, S., & Bindera, S. (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 110(29), 11911-11916. https://doi.org/10.1073/pnas.1310880110 - PubMed
  93. Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., & Hughes, T. P. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293(5530), 629-637. https://doi.org/10.1126/science.1059199 - PubMed
  94. Jackson, M. C., Loewen, C. J., Vinebrooke, R. D., & Chimimba, C. T. (2016). Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Global Change Biology, 22(1), 180-189. https://doi.org/10.1111/gcb.13028 - PubMed
  95. Jaeger, K. L., Oldenb, J. D., & Pelland, N. A. (2014). Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13894-13899. https://doi.org/10.1073/pnas.1320890111 - PubMed
  96. Jaiswal, D., & Pandey, J. (2018). Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotoxicological implications in the Ganga River (India). Ecotoxicology and Environmental Safety, 150, 104-115. https://doi.org/10.1016/j.ecoenv.2017.12.015 - PubMed
  97. Jaiswal, D., & Pandey, J. (2019a). Hypoxia and associated feedbacks at sediment-water interface as an early warning signal of resilience shift in an anthropogenically impacted river. Environmental Research, 178, 108712. https://doi.org/10.1016/j.envres.2019.108712 - PubMed
  98. Jaiswal, D., & Pandey, J. (2019b). Carbon dioxide emission coupled extracellular enzyme activity at land-water interface predict C-eutrophication and heavy metal contamination in Ganga River, India. Ecological Indicators, 99, 349-364. https://doi.org/10.1016/j.ecolind.2018.12.046 - PubMed
  99. Jaiswal, D., & Pandey, J. (2019c). Investigations on peculiarities of land-water interface and its use as a stable testbed for accurately predicting changes in ecosystem responses to human perturbations: A sub-watershed scale study with the Ganga River. Journal of Environmental Management, 238, 178-193. https://doi.org/10.1016/j.jenvman.2019.02.126 - PubMed
  100. Jaiswal, D., & Pandey, J. (2019d). An ecological response index for simultaneous prediction of eutrophication and metal pollution in large rivers. Water Research, 161, 423-438. https://doi.org/10.1016/j.watres.2019.06.030 - PubMed
  101. Jaiswal, D., & Pandey, J. (2019e). Anthropogenically enhanced sediment oxygen demand creates mosaic of oxygen deficient zones in the Ganga River: Implications for river health. Ecotoxicology and Environmental Safety, 171, 709-720. https://doi.org/10.1016/j.ecoenv.2019.01.039 - PubMed
  102. Jaiswal, D., & Pandey, J. (2020). Benthic hypoxia in anthropogenically-impacted rivers provides positive feedback enhancing the level of bioavailable metals at sediment-water interface. Environmental Pollution, 258, 113643. https://doi.org/10.1016/j.envpol.2019.113643 - PubMed
  103. Jaiswal, D., & Pandey, J. (2021a). River ecosystem resilience risk index: A quantitative predictor of resilience and critical transitions in human-impacted large rivers. Environmental Pollution, 268, 11557. https://doi.org/10.1016/j.envpol.2020.115771 - PubMed
  104. Jaiswal, D., & Pandey, J. (2021b). Human-driven shifts in ecosystem feedbacks may exacerbate the degradation of ecosystem functioning in Ganga River. Journal of Hydrology, 598, 126261. https://doi.org/10.1016/j.jhydrol.2021.126261 - PubMed
  105. Janssen, A. B., Teurlincx, S., An, S., Janse, J. H., Paerl, H. W., & Mooij, W. M. (2014). Alternative stable states in large shallow lakes? Journal of Great Lakes Research, 40(4), 813-826. https://doi.org/10.1016/j.jglr.2014.09.019 - PubMed
  106. Jensen, O. P., Hrabik, T. R., Martell, S. J. D., Walters, C. J., & Kitchell, J. F. (2006). Diel migration in the Lake Superior pelagic community: Modeling trade-offs at an intermediate trophic level. Canadian Journal Fisheries and Aquatic Sciences, 63, 2296-2307. https://doi.org/10.1139/f06-125 - PubMed
  107. Jeppesen, E., Jensen, J. P., Søndergaard, M., & Lauridsen, T. (2005). Response of fish and plankton to nutrient loading reduction in 8 shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology, 50, 1616-1627. - PubMed
  108. Jeppesen, E., Sondergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., Coveney, M. F., Deneke, R., Dokulil, M. T., Foy, B., Gerdeaux, D., Hampton, S. E., Hilt, S., Kangur, K., Kohler, J., Lammens, E. H., Lauridsen, T. L., Manca, M., Miracle, M. R., … Winder, M. (2005). Lake responses to reduced nutrient loading - An analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 50, 1747-1771. https://doi.org/10.1111/j.1365-2427.2005.01415.x - PubMed
  109. Jeppesen, E., Søndergaard, M., Kronvang, B., Jensen, J. P., Svendsen, L. M., & Lauridsen, T. L. (1999). Lake and catchment management in Denmark. Hydrobiologia, 395(396), 419-432. https://doi.org/10.1023/a:1017071602549 - PubMed
  110. Jin, Z., Ding, S., Sun, Q., Gao, S., Fu, Z., Gong, M., Lin, J., Wang, D., & Wang, Y. (2019). High resolution spatiotemporal sampling as a tool for comprehensive assessment of zinc mobility and pollution in sediments of a eutrophic lake. Journal of Hazardous Materials, 364, 182-191. https://doi.org/10.1016/j.jhazmat.2018.09.067 - PubMed
  111. Kang, M., Yimei, T., Sen, P., & Mengqi, W. (2019). Effect of dissolved oxygen and nutrient levels on heavy metal contents and fractions in river surface sediments. Science of the Total Environment, 648, 861-870. https://doi.org/10.1016/j.scitotenv.2018.08.201 - PubMed
  112. Kinsolving, A. D., & Bain, M. B. (1993). Fish assemblage recovery along a riverine disturbance gradient. Ecological Applications, 3(3), 531-544. https://doi.org/10.2307/1941921 - PubMed
  113. Klug, J. L., Fischer, J. M., Ives, A. R., & Dennis, B. (2000). Compensatory dynamics in planktonic community responses to pH perturbations. Ecology, 81(2), 387-398. https://doi.org/10.2307/177435 - PubMed
  114. Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19(4), 573-592. https://doi.org/10.2307/1468118 - PubMed
  115. Lancaster, J., & Hildrew, A. G. (1993). Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society, 12(4), 385-393. https://doi.org/10.2307/1467619 - PubMed
  116. Larsen, D. P., Van Sickle, J., Malueg, K. W., & Smith, P. D. (1979). The effect of wastewater phosphorus removal on Shagawa Lake, Minnesota: Phosphorus supplies, lake phosphorus and chlorophyll a. Water Research, 13(12), 1259-1272. https://doi.org/10.1016/0043-1354(79)90170-2 - PubMed
  117. Lathrop, R. C. (1990). Response of Lake Mendota (Wisconsin, U.S.A.) to decreased phosphorus loadings and the effect on downstream lakes. Verhandlungen des Internationalen Verein Limnologie, 24, 457-463. https://doi.org/10.1080/03680770.1989.11898780 - PubMed
  118. Lathrop, R. C. (2007). Perspectives on the eutrophication of the Yahara lakes. Lake and Reservoir Management, 23, 345-365. https://doi.org/10.1080/07438140709354023 - PubMed
  119. Lathrop, R. C., Nehls, S. B., Brynildson, C. L., & Plass, K. R. (1992). The fishery of the Yahara lakes. Technical Bulletin No., 181, Department of Natural Resources, Madison, Wisconsin. - PubMed
  120. Little, C. J., & Altermatt, F. (2018). Species turnover and invasion of dominant freshwater invertebrates alter biodiversity-ecosystem-function relationship. Ecological Monographs, 88(3), 461-480. https://doi.org/10.1002/ecm.1299 - PubMed
  121. Liu, S. M., Zhang, J., Chen, H. T., Wu, Y., Xiong, H., & Zhang, Z. F. (2003). Nutrients in the Changjiang and its tributaries. Biogeochemistry, 62, 1-18. https://doi.org/10.1023/A:1021162214304 - PubMed
  122. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., & Tilman, D. (2001). Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294(5543), 804-808. https://doi.org/10.1126/science.1064088 - PubMed
  123. Madrid, V. M., Taylor, G. T., Scranton, M. I., & Chistoserdov, A. Y. (2001). Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Applied and Environmental Microbiology, 67, 1663-1674. https://doi.org/10.1128/AEM.67.4.1663-1674.2001 - PubMed
  124. Martin, G. D., Nisha, P. A., Balachandran, K. K., Madhu, N. V., Nair, M., Shaiju, P., Joseph, T., Srinivas, K., & Gupta, G. V. M. (2011). Eutrophication induced changes in benthic community structure of a flow-restricted tropical estuary (Cochin backwaters), India. Environmental Monitoring and Assessment, 176(1), 427-438. https://doi.org/10.1007/s10661-010-1594-1 - PubMed
  125. Matlock, M. D., Kasprzak, K. R., & Osborn, G. S. (2003). Sediment oxygen demand in the Arroyo Colorado River. Journal of the American Water Resource Association, 39, 267-275. https://doi.org/10.1111/j.1752-1688.2003.tb04382.x - PubMed
  126. Matthaei, C., Uehlinger, U. R. S., & Frutiger, A. (1997). Response of benthic invertebrates to natural versus experimental disturbance in a Swiss prealpine river. Freshwater Biology, 37(1), 61-77. https://doi.org/10.1046/j.1365-2427.1997.00141.x - PubMed
  127. Matzinger, A., Müller, B., Niederhauser, P., Schmid, M., & Wüest, A. (2010). Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnology and Oceanography, 55, 2073-2084. https://doi.org/10.4319/lo.2010.55.5.2073 - PubMed
  128. McIsaac, G. F., Mark, B. D., Gertner, G. Z., & Goolsby, D. A. (2001). Nitrate flux in the Mississippi River. Nature, 414, 166-167. https://doi.org/10.1038/35102672 - PubMed
  129. McMullen, L. E., Leenheer, P. D., Tonkin, J. D., & Lytle, D. A. (2017). High mortality and enhanced recovery: Modelling the countervailing effects of disturbance on population dynamics. Ecology Letters, 20, 1566-1575. https://doi.org/10.1111/ele.12866 - PubMed
  130. Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and human well-being: Synthesis. Island Press. - PubMed
  131. Mitsch, W. J., Day, J. W., Gilliam, J. W., Groffman, P. M., Hey, D. L., Randall, G. W., & Wang, N. (2001). Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to counter a persistent ecological problem. BioScience, 51(5), 373-388. https://doi.org/10.1641/0006-3568(2001)051[0373:RNLTTG]2.0.CO;2 - PubMed
  132. Moosman, L., Gächter, R., Müller, B., & Wüest, A. (2006). Is phosphorus retention in lakes controlled by oxygen or phosphorus? Limnology and Oceanography, 51, 763-771. https://doi.org/10.4319/lo.2006.51.1_part_2.0763 - PubMed
  133. Morris, W. F., Pfister, C. A., Tuljapurkar, S., Haridas, C. V., Boggs, C. L., Boyce, M. S., Bruna, E. M., Church, D. R., Coulson, T., Doak, D. F., & Forsyth, S. (2008). Longevity can buffer plant and animal populations against changing climatic variability. Ecology, 89(1), 19-25. https://doi.org/10.1890/07-0774.1 - PubMed
  134. Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., & Dodds, W. K. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452, 202-205. https://doi.org/10.1038/nature06686 - PubMed
  135. Muller-Karger, F., Varela, R., Thunell, R., Scranton, M., Bohrer, R., Taylor, G., Capelo, J., Astor, Y., Tappa, E., Ho, T.-Y., & Walsh, J. J. (2001). Annual cycle of primary production in the Cariaco Basin: Response to upwelling and implications for vertical export. Journal of Geophysical Research: Oceans, 106, 4527-4542. https://doi.org/10.1029/1999JC000291 - PubMed
  136. Muneepeerakul, R., Bertuzzo, E., Lynch, H. J., Fagan, W. F., Rinaldo, A., & Rodriguez-Iturbe, I. (2008). Neutral meta community models predict fish diversity patterns in Mississippi-Missouri basin. Nature, 453(7192), 220-222. https://doi.org/10.1038/nature06813 - PubMed
  137. Murphy, B. P., Johnson, J. P., Gasparini, N. M., & Sklar, L. S. (2016). Chemical weathering as a mechanism for the climatic control of bedrock river incision. Nature, 532(7598), 223-227. https://doi.org/10.1038/nature17449 - PubMed
  138. Niemi, G. J., DeVore, P., Detenbeck, N., Taylor, D., Lima, A., Pastor, J., Yount, J. D., & Naiman, R. J. (1990). Overview of case studies on recovery of aquatic systems from disturbance. Environmental Management, 14(5), 571-587. https://doi.org/10.1007/BF02394710 - PubMed
  139. Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308(5720), 405-408. https://doi.org/10.1126/science.1107887 - PubMed
  140. Nürnberg, G. K. (1984). The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnology and Oceanography, 29(1), 111-124. https://doi.org/10.4319/lo.1984.29.1.0111 - PubMed
  141. Nyström, M., & Folke, C. (2001). Spatial resilience of coral reefs. Ecosystems, 4, 406-417. https://doi.org/10.1007/s10021-001-0019-y - PubMed
  142. Oczkowski, A. J., Nixon, S. W., Grangera, S. L., El-Sayed, A. F. M., & McKinney, R. A. (2009). Anthropogenic enhancement of Egypt's Mediterranean fishery. Proceedings of the National Academy of Sciences of the United States of America, 106, 1364-1367. https://doi.org/10.1073/pnas.0812568106 - PubMed
  143. Olsson, P., & Folke, C. (2001). Local ecological knowledge and institutional dynamics for ecosystem management: A study of Lake Racken watershed, Sweden. Ecosystems, 4, 85-104. https://doi.org/10.1007/s100210000061 - PubMed
  144. Ostrom, N. E., Carrick, H. J., Twiss, M. R., & Piwinski, L. (2005). Evaluation of primary production in Lake Erie by multiple proxies. Oecologia, 144, 115-124. https://doi.org/10.1007/s00442-005-0032-5 - PubMed
  145. Pace, M. L., Carpenter, S. R., Johnson, R. A., & Kurtzweil, J. T. (2013). Zooplankton provide early warnings of a regime shift in a whole lake manipulation. Limnology and Oceanography, 58(2), 525-532. https://doi.org/10.4319/lo.2013.58.2.0525 - PubMed
  146. Paine, R. T., Tegner, M. J., & Johnson, E. A. (1998). Compounded perturbations yield ecological surprises. Ecosystems, 1, 535-545. https://doi.org/10.1007/s100219900049 - PubMed
  147. Palmer, M. A., & Filoso, S. (2009). Restoration of ecosystem services for environmental markets. Science, 325(5940), 575-576. https://doi.org/10.1126/science.1172976 - PubMed
  148. Pan, G., Yang, B. O., Wang, D., Chen, H., Tian, B.-H., Zhang, M.-L., Yuan, X.-Z., & Chen, J. (2011). In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecological Engineering, 37(2), 302-308. https://doi.org/10.1016/j.ecoleng.2010.11.019 - PubMed
  149. Pandey, J. (2011). The influence of atmospheric deposition of pollutants on cross-domain causal relationships for three tropical freshwater lakes in India. Lakes and Reservoirs: Research and Management, 16, 113-121. https://doi.org/10.1111/j.1440-1770.2011.00456.x - PubMed
  150. Pandey, J., Jaiswal, D., & Pandey, U. (2019). Point-source driven seasonal hypoxia signals habitat fragmentation and ecosystem change in the Ganga River. Current Science, 117, 1947-1949. - PubMed
  151. Pandey, J., & Pandey, U. (2009). Microbial processes at land-water interface and cross-domain causal relationships as influenced by atmospheric deposition of pollutants in three freshwater lakes in India. Lakes and Reservoirs: Research and Management, 14, 71-84. https://doi.org/10.1111/j.1440-1770.2009.00391.x - PubMed
  152. Pandey, J., Pandey, U., & Singh, A. V. (2014a). Impact of changing atmospheric deposition chemistry on carbon and nutrient loading to Ganga River: Integrating land-atmosphere-water components to uncover cross-domain carbon linkages. Biogeochemistry, 14, 179-198. https://doi.org/10.1007/s10533-014-9957-2 - PubMed
  153. Pandey, J., Pandey, U., & Singh, A. V. (2014b). The skewed N:P stoichiometry resulting from changing atmospheric deposition chemistry drives the pattern of ecological nutrient limitation in the Ganges. Current Science, 107, 956-958. - PubMed
  154. Pandey, J., & Yadav, A. (2017). Alternative alert system for Ganga river eutrophication using alkaline phosphatase as a level determinant. Ecological Indicators, 82, 327-343. https://doi.org/10.1016/j.ecolind.2017.06.061 - PubMed
  155. Pandey, U., & Pandey, J. (2013). Impact of DOC trends resulting from changing climatic extremes and atmospheric deposition chemistry on periphyton community of a freshwater tropical lake of India. Biogeochemistry, 112, 537-553. https://doi.org/10.1007/s10533-012-9747-7 - PubMed
  156. Pandey, U., Pandey, J., Singh, A. V., & Mishra, A. (2017). Anthropogenic drivers shift diatom dominance-diversity relationships and transparent exopolymeric particles production in River Ganga: Implication for natural cleaning of river water. Current Science, 113, 959-964. https://doi.org/10.18520/cs/v113/i05/959-964 - PubMed
  157. Pfisterer, A. B., & Schmid, B. (2002). Diversity-dependent production can decrease the stability of ecosystem functioning. Nature, 416, 84-86. https://doi.org/10.1038/416084a - PubMed
  158. Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The future of biodiversity. Science, 269, 347-350. https://doi.org/10.1126/science.269.5222.347 - PubMed
  159. Piña-Ochoa, E., & Álvarez-Cobelas, M. (2006). Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry, 81, 111-130. https://doi.org/10.1007/s10533-006-9033-7 - PubMed
  160. Poff, N. L. R., Brown, C. M., Grantham, T. E., Matthews, J. H., Palmer, M. A., Spence, C. M., Wilby, R. L., Haasnoot, M., Mendoza, G. F., Dominique, K. C., & Baeza, A. (2016). Sustainable water management under future uncertainty with eco-engineering decision scaling. Nature Climate Change, 6, 25-34. https://doi.org/10.1038/nclimate2765 - PubMed
  161. Poorter, L., Bongers, F., Aide, T. M., Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H., Broadbent, E. N., Chazdon, R. L., & Craven, D. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530(7589), 211-214. https://doi.org/10.1038/nature16512 - PubMed
  162. Pörtner, H. O., & Farrell, A. P. (2008). Physiology and climate change. Science, 322, 690-692. https://doi.org/10.1126/science.1163156 - PubMed
  163. Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95-97. https://doi.org/10.1126/science.1135471 - PubMed
  164. Rabalais, N. N., Turner, R. E., Justić, D., Dortch, Q., Wiseman, W. J., Gupta, B. K. S., & Justic, D. (1996). Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries, 19, 386-407. https://doi.org/10.2307/1352458 - PubMed
  165. Rahmstorf, S. (1995). Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378(6553), 145-149. https://doi.org/10.1038/378145a0 - PubMed
  166. Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(3), 205-221, 230a. - PubMed
  167. Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., & Arndt, S. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8), 597-607. https://doi.org/10.1038/ngeo1830 - PubMed
  168. Rietkerk, M., Dekker, S. C., de Ruiter, P. C., & van de Koppel, J. (2004). Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305, 1926-1929. https://doi.org/10.1126/science.1101867 - PubMed
  169. Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W., Suberkropp, K., & Wallace, J. B. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 347(6226), 1142-1145. https://doi.org/10.1126/science.aaa1958 - PubMed
  170. Rudd, J. W. M., Kelly, C. A., Schindler, D. W., & Turner, M. A. (1988). Disruption of the nitrogen cycle in acidified lakes. Science, 240(4858), 1515-1517. https://doi.org/10.1126/science.240.4858.1515 - PubMed
  171. Ryo, M., Harvey, E., Robinson, C. T., & Altermatt, F. (2018). Nonlinear higher order abiotic interactions explain riverine biodiversity. Journal of Biogeography, 45(3), 628-639. https://doi.org/10.1111/jbi.13164 - PubMed
  172. Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10), 891-904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 - PubMed
  173. Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., & Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 461, 53-59. https://doi.org/10.1038/nature08227 - PubMed
  174. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596. https://doi.org/10.1038/35098000 - PubMed
  175. Scheffer, M., Szabo, S., Gragnani, A., van Nes, E. H., Rinaldi, S., Kautsky, N., Norberg, J., Roijackers, R. M. M., & Franken, R. J. M. (2003). Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America, 100, 4040-4045. https://doi.org/10.1073/pnas.0737918100 - PubMed
  176. Scheffer, M., & van Nes, E. H. (2007). Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584, 455-466. https://doi.org/10.1007/978-1-4020-6399-2_41 - PubMed
  177. Schelske, C. L., Stoermer, E. F., & Kenney, W. F. (2006). Historic low-level phosphorus enrichment in the Great Lakes inferred from biogenic silica accumulation in sediments. Limnology and Oceanography, 51, 728-748. https://doi.org/10.4319/lo.2006.51.1_part_2.0728 - PubMed
  178. Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F., & Pace, M. L. (1997). Influence of food web structure on carbon exchange between lakes and the atmosphere. Science, 277, 248-251. https://doi.org/10.1126/science.277.5323.248 - PubMed
  179. Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M., & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11254-11258. https://doi.org/10.1073/pnas.0805108105 - PubMed
  180. Schindler, D. W., Hecky, R. E., & McCullough, G. K. (2012). The rapid eutrophication of Lake Winnipeg: Greening under global change. Journal of Great Lakes Research, 38, 6-13. https://doi.org/10.1016/j.jglr.2012.04.003 - PubMed
  181. Schindler, D. W., Mills, K. H., Malley, D. F., Findlay, D. L., Shearer, J. A., Davies, I. J., Turner, M. A., Linsey, G. A., & Cruikshank, D. R. (1985). Long-term ecosystem stress: The effects of years of experimental acidification on a small lake. Science, 228(4706), 1395-1401. https://doi.org/10.1126/science.228.4706.1395 - PubMed
  182. Schröder, A., Persson, L., & De Roos, A. M. (2005). Direct experimental evidence for alternative stable states: A review. Oikos, 110(1), 3-19. https://doi.org/10.1111/j.0030-1299.2005.13962.x - PubMed
  183. Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., & Drecht, G. V. (2006). Denitrification across landscapes and waterscapes: A synthesis. Ecology Application, 16, 2064-2090. https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 - PubMed
  184. Seymour, M., Deiner, K., & Altermatt, F. (2016). Scale and scope matter when explaining varying patterns of community diversity in riverine meta communities. Basic and Applied Ecology, 17(2), 134-144. https://doi.org/10.1016/j.baae.2015.10.007 - PubMed
  185. Siddiqui, E., Pandey, J., Pandey, U., Mishra, V., & Singh, A. V. (2020). Integrating atmospheric deposition-driven nutrients (N and P), microbial and biogeochemical processes in the watershed with carbon and nutrient export to the Ganga River. Biogeochemistry, 147, 149-178. https://doi.org/10.1007/s10533-019-00634-w - PubMed
  186. Singh, A., Reinhardt, L., & Foufoula-Georgiou, E. (2015). Landscape reorganization under changing climatic forcing: Results from an experimental landscape. Water Resources Research, 51(6), 4320-4337. https://doi.org/10.1002/2015WR017161 - PubMed
  187. Slavik, K., Peterson, B. J., Deegan, L. A., Bowden, W. B., Hershey, A. E., & Hobbie, J. E. (2004). Long-term responses of the Kuparuk River ecosystem to phosphorus fertilization. Ecology, 85, 939-954. https://doi.org/10.1890/02-4039 - PubMed
  188. Smith, M. D., & Knapp, A. K. (2003). Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6, 509-517. https://doi.org/10.1046/j.1461-0248.2003.00454.x - PubMed
  189. Smith, M. D., Knapp, A. K., & Collins, S. L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90(12), 3279-3289. https://doi.org/10.1890/08-1815.1 - PubMed
  190. Solomon, C. T., Jones, S. E., Weidel, B. C., Buffam, I., Fork, M. L., Karlsson, J., Larsen, S., Lennon, J. T., Read, J. S., Sadro, S., & Saros, J. E. (2015). Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges. Ecosystems, 18(3), 376-389. https://doi.org/10.1007/s10021-015-9848-y - PubMed
  191. Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506-509, 135-145. https://doi.org/10.1023/B:HYDR.0000008611.12704.dd - PubMed
  192. Soranno, P. A., Cheruvelil, K. S., Bissell, E. G., Bremigan, M. T., Downing, J. A., Fergus, C. E., Filstrup, C. T., Henry, E. N., Lottig, N. R., Stanley, E. H., Stow, C. A., Tan, P.-N., Wagner, T., & Webster, K. E. (2014). Cross-scale interactions: Quantifying multi-scaled cause-effect relationships in macrosystems. Frontiers in Ecology and Environment, 12(1), 65-73. https://doi.org/10.1890/120366 - PubMed
  193. Steckbauer, A., Duarte, C. M., Carstensen, J., Vaquer-Sunyer, R., & Conley, D. J. (2011). Ecosystem impacts of hypoxia: Thresholds of hypoxia and pathways to recovery. Environmental Research Letters, 6(2), 025003. https://doi.org/10.1088/1748-9326/6/2/025003 - PubMed
  194. Suding, K. N., Gross, K. L., & Houseman, G. R. (2004). Alternative states and positive feedbacks in restoration ecology. Trends in Ecology & Evolution, 19(1), 46-53. https://doi.org/10.1016/j.tree.2003.10.005 - PubMed
  195. Taipale, S. J., Brett, M. T., Hahn, M. W., Martin-Creuzburg, D., Yeung, S., Hiltunen, M., Strandberg, U., & Kankaala, P. (2014). Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology, 95(2), 563-576. https://doi.org/10.1890/13-0650.1 - PubMed
  196. Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277(5330), 1300-1302. https://doi.org/10.1126/science.277.5330.1300 - PubMed
  197. Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B., & Lytle, D. A. (2017). Seasonality and predictability shape temporal species diversity. Ecology, 98(5), 1201-1216. https://doi.org/10.1002/ecy.1761 - PubMed
  198. Tonkin, J. D., Merritt, D. M., Olden, J. D., Reynolds, L. V., & Lytle, D. A. (2018). Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology & Evolution, 2(1), 86-93. https://doi.org/10.1038/s41559-017-0379-0 - PubMed
  199. Tonkin, J. D., Poff, N. L. R., Bond, N. R., Horne, A., Merritt, D. M., Reynolds, L. V., Olden, J. D., Ruhi, A., & Lytle, D. A. (2019). Prepare river ecosystems for an uncertain future. Nature, 570, 301-303. https://doi.org/10.1038/d41586-019-01877-1 - PubMed
  200. Townsend, C. R., Scarsbrook, M. R., & Dolédec, S. (1997). Quantifying disturbance in streams: Alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. Journal of the North American Benthological Society, 16(3), 531-544. https://doi.org/10.2307/1468142 - PubMed
  201. Turner, R. E., Rabalais, N. N., Justic, D., & Dortch, Q. (2003). Global patterns of dissolved silicate and nitrogen in large rivers. Biogeochemistry, 64, 297-317. - PubMed
  202. van der Geest, H. G., & Léon Paumen, M. (2008). Dynamics of metal availability and toxicity in historically polluted floodplain sediments. Science of the Total Environment, 406, 419-425. https://doi.org/10.1016/j.scitotenv.2008.05.052 - PubMed
  203. van Nes, E. H., Rip, W. J., & Scheffer, M. (2007). A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems, 10, 17-28. https://doi.org/10.1007/s10021-006-0176-0 - PubMed
  204. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137. https://doi.org/10.1139/f80-017 - PubMed
  205. Venterink, H. O., Hummelink, E., & Van den Hoorn, M. (2003). Denitrification potential of a river floodplain during flooding with nitrate-rich water: Grasslands versus reedbeds. Biogeochemistry, 65, 233-244. - PubMed
  206. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555-561. https://doi.org/10.1038/nature09440 - PubMed
  207. Wallace, J. B., Eggert, S. L., Meyer, J. L., & Webster, J. R. (1997). Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science, 277, 102-104. https://doi.org/10.1126/science.277.5322.102 - PubMed
  208. Wang, B. (2006). Cultural eutrophication in the Changjiang (Yangtze River) plume History and perspective. Estuarine and Coastal Shelf Science, 69, 471-477. https://doi.org/10.1016/j.ecss.2006.05.010 - PubMed
  209. Wang, J. J., Bowden, R. D., Lajtha, K., Washko, S. E., Wurzbacher, S. J., & Simpson, M. J. (2019). Long-term nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the molecular composition of soil organic matter. Biogeochemistry, 142(2), 299-313. https://doi.org/10.1007/s10533-018-00535-4 - PubMed
  210. Wang, J., & Zhang, Z. (2020). Phytoplankton, dissolved oxygen and nutrient patterns along a eutrophic river-estuary continuum: Observation and modeling. Journal of Environmental Management, 261, 110233. https://doi.org/10.1016/j.jenvman.2020.110233 - PubMed
  211. Wang, X., Depew, D., Schiff, S., & Smith, R. E. H. (2008). Photosynthesis, respiration, and stable isotopes of oxygen in a large oligotrophic lake (Lake Erie, U.S.A.-Canada). Canadian Journal of Fisheries and Aquatic Sciences, 65, 2320-2331. https://doi.org/10.1139/F08-134 - PubMed
  212. Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graca, M. A. S., Fleituch, T., Lacoursiere, J. O., Nistorescu, M., Pozo, J., Risnoveanu, G., … Chauvet, E. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336(6087), 1438-1440. https://doi.org/10.1126/science.1219534 - PubMed
  213. Wu, R. S. S. (2002). Hypoxia: From molecular responses to ecosystem responses. Marine Pollution Bulletin, 45, 35-45. https://doi.org/10.1016/S0025-326X(02)00061-9 - PubMed
  214. WWAP (World Water Assessment Programme). (2009). Water in a changing world. The third world water development report. UNESCO. - PubMed
  215. Yadav, A., & Pandey, J. (2017). Water quality interaction with alkaline phosphatase in the Ganga River: Implications for river health. Bulletin of Environmental Contamination and Toxicology, 99, 75-82. https://doi.org/10.1007/s00128-017-2108-4 - PubMed
  216. Yu, X. J., Yan, Y., & Wang, W. X. (2010). The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China. Marine Pollution Bulletin, 60, 1364-1371. https://doi.org/10.1016/j.marpolbul.2010.05.012 - PubMed
  217. Zhang, J., Huang, W. W., Liu, M. G., & Cui, J. Z. (1994). Eco-social impact and chemical regimes of large Chinese rivers: A short discussion. Water Research, 28, 609-617. https://doi.org/10.1016/0043-1354(94)90011-6 - PubMed
  218. Zhang, J., Zhang, Z. F., Liu, S. M., Wu, Y., Xiong, H., & Chen, H. T. (1999). Human impacts on the large world rivers. Would the Changjiang (Yangtze River) be an illustration? Global Biogeochemical Cycles, 13, 1099-1105. https://doi.org/10.1029/1999GB900044 - PubMed

MeSH terms

Publication Types