Display options
Share it on

Exp Physiol. 2021 Nov;106(11):2168-2176. doi: 10.1113/EP089421. Epub 2021 Oct 04.

Examining interindividual differences in select muscle and whole-body adaptations to continuous endurance training.

Experimental physiology

Jacob T Bonafiglia, Hashim Islam, Nicholas Preobrazenski, Andrew Ma, Madeleine Deschenes, Avigail T Erlich, Joe Quadrilatero, David A Hood, Brendon J Gurd

Affiliations

  1. School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.
  2. School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.
  3. Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
  4. Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
  5. Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.

PMID: 33998072 DOI: 10.1113/EP089421

Abstract

NEW FINDINGS: What is the central question of the study? Do interindividual differences in trainability exist for morphological and molecular skeletal muscle responses to aerobic exercise training? What is the main finding and its importance? Interindividual differences in trainability were present for some, but not all, morphological and molecular outcomes included in our study. Our findings suggest that it is inappropriate, and perhaps erroneous, to assume that variability in observed responses reflects interindividual differences in trainability in skeletal muscle responses to aerobic exercise training.

ABSTRACT: Studies have interpreted a wide range of morphological and molecular changes in human skeletal muscle as evidence of interindividual differences in trainability. However, these interpretations fail to account for the influence of random measurement error and within-subject variability. The purpose of the present study was to use the standard deviation of individual response (SD

© 2021 The Authors. Experimental Physiology © 2021 The Physiological Society.

Keywords: SDIR; aerobic exercise training; individual responses; interindividual variability

References

  1. Arribat, Y., Broskey, N. T., Greggio, C., Boutant, M., Conde Alonso, S., Kulkarni, S. S., Lagarrigue, S., Carnero, E. A., Besson, C., Cantó, C., & Amati, F. (2019). Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training. Acta Physiologica, 225, e13179. https://doi.org/10.1111/apha.13179 - PubMed
  2. Atkinson, G., & Batterham, A. M. (2015). True and false interindividual differences in the physiological response to an intervention. Experimental Physiology, 100, 577-588. https://doi.org/10.1113/EP085070 - PubMed
  3. Bloemberg, D., & Quadrilatero, J. (2012). Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One, 7, e35273. https://doi.org/10.1371/journal.pone.0035273 - PubMed
  4. Bonafiglia, J. T., Brennan, A. M., Ross, R., & Gurd, B. J. (2019). An appraisal of the SD IR as an estimate of true individual differences in training responsiveness in parallel-arm exercise randomized controlled trials. Physiological Reports, 7, e14163. https://doi.org/10.14814/phy2.14163 - PubMed
  5. Bonafiglia, J. T., Islam, H., Preobrazenski, N., Drouin, P., Ma, A., Gerhart, A., Quadrilatero, J., Tschakovsky, M. E., Tripp, D. A., Perry, C. G. R., Simpson, C. A., & Gurd, B. J. (2020). A comparison of pain responses, hemodynamic reactivity and fibre type composition between Bergström and microbiopsy skeletal muscle biopsies. Current Research in Physiology, 3, 1-10. https://doi.org/10.1016/j.crphys.2020.05.001 - PubMed
  6. Bonafiglia, J. T., Islam, H., Preobrazenski, N., & Gurd, B. J. (2021). Risk of bias and reporting practices in studies comparing VO2max responses to sprint interval vs. continuous training: A systematic review and meta-analysis. Journal of Sport and Health Science, https://doi.org/10.1016/j.jshs.2021.03.005 - PubMed
  7. Brandt, N., Gunnarsson, T. P., Bangsbo, J., & Pilegaard, H. (2018). Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Physiological Reports, 6, e13651. https://doi.org/10.14814/phy2.13651 - PubMed
  8. Brinkmann, C., Przyklenk, A., Metten, A., Schiffer, T., Bloch, W., Brixius, K., & Gehlert, S. (2017). Influence of endurance training on skeletal muscle mitophagy regulatory proteins in type 2 diabetic men. Endocrine Research, 42, 325-330. https://doi.org/10.1080/07435800.2017.1323914 - PubMed
  9. Carter, H. N., Kim, Y., Erlich, A. T., Zarrin-khat, D., & Hood, D. A. (2018). Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity. Journal of Physiology, 596, 3567-3584. https://doi.org/10.1113/JP275998 - PubMed
  10. Halpern, S. D. (2003). Evaluating preference effects in partially unblinded, randomized clinical trials. Journal of Clinical Epidemiology, 56, 109-115. https://doi.org/10.1016/S0895-4356(02)00598-X - PubMed
  11. Hammond, B. P., Stotz, P. J., Brennan, A. M., Lamarche, B., Day, A. G., & Ross, R. (2019). Individual variability in waist circumference and body weight in response to exercise. Medicine and Science in Sports and Exercise, 51, 315-322. https://doi.org/10.1249/MSS.0000000000001784 - PubMed
  12. Hecksteden, A., Pitsch, W., Rosenberger, F., & Meyer, T. (2018). Repeated testing for the assessment of individual response to exercise training. Journal of Applied Physiology, 124, 1567-1579. https://doi.org/10.1152/japplphysiol.00896.2017 - PubMed
  13. Hood, D. A., Memme, J. M., Oliveira, A. N., & Triolo, M. (2019). Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annual Review of Physiology, 81, 19-41. https://doi.org/10.1146/annurev-physiol-020518-114310 - PubMed
  14. Hopkins, W. G. (2015). Individual responses made easy. Journal of Applied Physiology, 118, 1444-1446. https://doi.org/10.1152/japplphysiol.00098.2015 - PubMed
  15. Islam, H., Bonafiglia, J. T., Del Giudice, M., Pathmarajan, R., Simpson, C. A., Quadrilatero, J., & Gurd, B. J. (2020a). Repeatability of training-induced skeletal muscle adaptations in active young males. Journal of Science and Medicine in Sport, 24, 494-498. - PubMed
  16. Islam, H., & Gurd, B. J. (2020). Exercise response variability: Random error or true differences in exercise response? Experimental Physiology, 105, 2022-2024. https://doi.org/10.1113/EP089015 - PubMed
  17. Islam, H., Ma, A., Amato, A., Cuillerier, A., Burelle, Y., Simpson, C. A., Quadrilatero, J., & Gurd, B. J. (2020b). Fiber-specific and whole-muscle LRP130 expression in rested, exercised, and fasted human skeletal muscle. Pflügers Archiv - European Journal of Physiology, 472, 375-384, https://doi.org/10.1007/s00424-020-02359-4 - PubMed
  18. Mann, T. N., Lamberts, R. P., & Lambert, M. I. (2014). High responders and low responders: Factors associated with individual variation in response to standardized training. Sport Medicine, 44, 1113-1124. https://doi.org/10.1007/s40279-014-0197-3 - PubMed
  19. McPhee, J. S., Williams, A. G., Perez-Schindler, J., Degens, H., Baar, K., & Jones, D. A. (2011). Variability in the magnitude of response of metabolic enzymes reveals patterns of co-ordinated expression following endurance training in women. Experimental Physiology, 96, 699-707. https://doi.org/10.1113/expphysiol.2011.057729 - PubMed
  20. Murach, K. A., Dungan, C. M., Kosmac, K., Voigt, T. B., Tourville, T. W., Miller, M. S., Bamman, M. M., Peterson, C. A., & Toth, M. J. (2019). Fiber typing human skeletal muscle with fluorescent immunohistochemistry. Journal of Applied Physiology, 127, 1632-1639. https://doi.org/10.1152/japplphysiol.00624.2019 - PubMed
  21. Preobrazenski, N., Bonafiglia, J. T., Nelms, M. W., Lu, S., Robins, L., LeBlanc, C., & Gurd, B. J. (2019). Does blood lactate predict the chronic adaptive response to training: A comparison of traditional and talk test prescription methods. Applied Physiology, Nutrition and Metabolism, 44, 179-186. https://doi.org/10.1139/apnm-2018-0343 - PubMed
  22. Raleigh, J. P., Giles, M. D., Islam, H., Nelms, M., Bentley, R. F., Jones, J. H., Neder, J. A., Boonstra, K., Quadrilatero, J., Simpson, C. A., Tschakovsky, M. E., & Gurd, B. J. (2018). Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training. Applied Physiology, Nutrition and Metabolism, 43, 1059-1068. https://doi.org/10.1139/apnm-2017-0864 - PubMed
  23. Ross, R., Blair, S. N., Arena, R., Church, T. S., Després, J.-P., Franklin, B. A., Haskell, W. L., Kaminsky, L. A., Levine, B. D., Lavie, C. J., Myers, J., Niebauer, J., Sallis, R., Sawada, S. S., Sui, X., & Wisløff, U. (2016). Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation, 134, e653-e699. https://doi.org/10.1161/CIR.0000000000000461 - PubMed
  24. Scribbans, T. D., Edgett, B. A., Vorobej, K., Mitchell, A. S., Joanisse, S. D., Matusiak, J. B. L., Parise, G., Quadrilatero, J., & Gurd, B. J. (2014). Fibre-specific responses to endurance and low volume high intensity interval training: Striking similarities in acute and chronic adaptation. PLoS One, 9, e98119. https://doi.org/10.1371/journal.pone.0098119 - PubMed
  25. Simoneau, J. A., Lortie, G., Boulay, M. R., Marcotte, M., Thibault, M. C., & Bouchard, C. (1986). Inheritance of human skeletal muscle and anaerobic capacity adaptation to high-intensity intermittent training. International Journal of Sports Medicine, 7, 167-171. https://doi.org/10.1055/s-2008-1025756 - PubMed
  26. Treasure, T., & MacRae, K. D. (1998). Minimisation: The platinum standard for trials? BMJ, 317, 362-363. https://doi.org/10.1136/bmj.317.7155.362 - PubMed
  27. Vollaard, N. B. J., Constantin-Teodosiu, D., Fredriksson, K., Rooyackers, O., Jansson, E., Greenhaff, P. L., Timmons, J. A., & Sundberg, C. J. (2009). Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. Journal of Applied Physiology, 106, 1479-1486. https://doi.org/10.1152/japplphysiol.91453.2008 - PubMed
  28. Walsh, J. J., Bonafiglia, J. T., Goldfield, G. S., Sigal, R. J., Kenny, G. P., Doucette, S., Hadjiyannakis, S., Alberga, A. S., Prud'homme, D., & Gurd, B. J. (2020). Interindividual variability and individual responses to exercise training in adolescents with obesity. Applied Physiology, Nutrition and Metabolism, 45, 45-54. https://doi.org/10.1139/apnm-2019-0088 - PubMed
  29. Williamson, P. J., Atkinson, G., & Batterham, A. M. (2018). Inter-individual differences in weight change following exercise interventions: A systematic review and meta-analysis of randomized controlled trials. Obesity Reviews, 19, 960-975. - PubMed
  30. Yan, X., Eynon, N., Papadimitriou, I. D., Kuang, J., Munson, F., Tirosh, O., O'Keefe, L., Griffiths, L. R., Ashton, K. J., Byrne, N., Pitsiladis, Y. P., & Bishop, D. J. (2017). The gene SMART study: Method, study design, and preliminary findings. BMC Genomics, 18, 821. - PubMed

Publication Types

Grant support