Display options
Share it on

J Neuroinflammation. 2021 May 11;18(1):111. doi: 10.1186/s12974-021-02162-7.

Capsazepine decreases corneal pain syndrome in severe dry eye disease.

Journal of neuroinflammation

Darine Fakih, Adrian Guerrero-Moreno, Christophe Baudouin, Annabelle Réaux-Le Goazigo, Stéphane Mélik Parsadaniantz

Affiliations

  1. Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
  2. R&D Department, Laboratoires Théa, 12 rue Louis Biérot, F-63000, Clermont-Ferrand, France.
  3. CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, F-75012, Paris, France.
  4. Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, 9 avenue Charles de Gaulle, F-92100, Boulogne-Billancourt, France.
  5. Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France. [email protected].

PMID: 33975636 PMCID: PMC8114509 DOI: 10.1186/s12974-021-02162-7

Abstract

BACKGROUND: Dry eye disease (DED) is a multifactorial disease of the ocular surface accompanied by neurosensory abnormalities. Here, we evaluated the effectiveness of transient receptor potential vanilloid-1 (TRPV1) blockade to alleviate ocular pain, neuroinflammation, and anxiety-like behavior associated with severe DED.

METHODS: Chronic DED was induced by unilateral excision of the Harderian and extraorbital lacrimal glands of adult male mice. Investigations were conducted at 21 days after surgery. The mRNA levels of TRPV1, transient receptor potential ankyrin-1 (TRPA1), and acid-sensing ion channels 1 and 3 (ASIC1 and ASIC3) in the trigeminal ganglion (TG) were evaluated by RNAscope in situ hybridization. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous and stimulated (cold, heat, and acid) corneal nerve responsiveness in ex vivo eye preparations. DED mice received topical instillations of the TRPV1 antagonist (capsazepine) twice a day for 2 weeks from d7 to d21 after surgery. The expression of genes involved in neuropathic and inflammatory pain was evaluated in the TG using a global genomic approach. Chemical and mechanical corneal nociception and spontaneous ocular pain were monitored. Finally, anxiety-like behaviors were assessed by elevated plus maze and black and white box tests.

RESULTS: First, in situ hybridization showed DED to trigger upregulation of TRPV1, TRPA1, ASIC1, and ASIC3 mRNA in the ophthalmic branch of the TG. DED also induced overexpression of genes involved in neuropathic and inflammatory pain in the TG. Repeated instillations of capsazepine reduced corneal polymodal responsiveness to heat, cold, and acidic stimulation in ex vivo eye preparations. Consistent with these findings, chronic capsazepine instillation inhibited the upregulation of genes involved in neuropathic and inflammatory pain in the TG of DED animals and reduced the sensation of ocular pain, as well as anxiety-like behaviors associated with severe DED.

CONCLUSION: These data provide novel insights on the effectiveness of TRPV1 antagonist instillation in alleviating abnormal corneal neurosensory symptoms induced by severe DED, opening an avenue for the repositioning of this molecule as a potential analgesic treatment for patients suffering from chronic DED.

Keywords: Behavior; Dry eye; Electrophysiology; Nociceptors; TRPV1 antagonist; Trigeminal pain

References

  1. Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo C-K, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–83. https://doi.org/10.1016/j.jtos.2017.05.008 . - PubMed
  2. Messmer EM. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int. 2015;112:71–81 quiz 82. - PubMed
  3. Nicolle P, Liang H, Reboussin E, Rabut G, Warcoin E, Brignole-Baudouin F, et al. Proinflammatory markers, chemokines, and enkephalin in patients suffering from dry eye disease. Int J Mol Sci. 2018;19(4). https://doi.org/10.3390/ijms19041221 . - PubMed
  4. Kitazawa M, Sakamoto C, Yoshimura M, Kawashima M, Inoue S, Mimura M, et al. The relationship of dry eye disease with depression and anxiety: a naturalistic observational study. Transl Vis Sci Technol. 2018;7(6):35. https://doi.org/10.1167/tvst.7.6.35 . - PubMed
  5. Wan KH, Chen LJ, Young AL. Depression and anxiety in dry eye disease: a systematic review and meta-analysis. Eye (Lond). 2016;30(12):1558–67. https://doi.org/10.1038/eye.2016.186 . - PubMed
  6. Goyal S, Hamrah P. Understanding neuropathic corneal pain-gaps and current therapeutic approaches. Semin Ophthalmol. 2016;31(1-2):59–70. https://doi.org/10.3109/08820538.2015.1114853 . - PubMed
  7. Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul Surf. 2017;15(1):15–47. https://doi.org/10.1016/j.jtos.2016.09.004 . - PubMed
  8. Belmonte C, Nichols JJ, Cox SM, Brock JA, Begley CG, Bereiter DA, et al. TFOS DEWS II pain and sensation report. Ocular Surface. 2017;15(3):404–37. https://doi.org/10.1016/j.jtos.2017.05.002 . - PubMed
  9. Launay P-S, Godefroy D, Khabou H, Rostene W, Sahel J-A, Baudouin C, et al. Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion. Exp Eye Res. 2015;139:136–43. https://doi.org/10.1016/j.exer.2015.06.008 . - PubMed
  10. Belmonte C, Acosta MC, Merayo-Lloves J, Gallar J. What causes eye pain? Curr Ophthalmol Rep. 2015;3(2):111–21. https://doi.org/10.1007/s40135-015-0073-9 . - PubMed
  11. González-González O, Bech F, Gallar J, Merayo-Lloves J, Belmonte C. Functional properties of sensory nerve terminals of the mouse cornea. Invest Ophthalmol Vis Sci. 2017;58(1):404–15. https://doi.org/10.1167/iovs.16-20033 . - PubMed
  12. Kurose M, Meng ID. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells. J Neurophysiol. 2013;110(2):495–504. https://doi.org/10.1152/jn.00222.2013 . - PubMed
  13. Kovács I, Luna C, Quirce S, Mizerska K, Callejo G, Riestra A, et al. Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease. Pain. 2016;157(2):399–417. https://doi.org/10.1097/j.pain.0000000000000455 . - PubMed
  14. Hatta A, Kurose M, Sullivan C, Okamoto K, Fujii N, Yamamura K, et al. Dry eye sensitizes cool cells to capsaicin-induced changes in activity via TRPV1. J Neurophysiol American Physiological Society. 2019;121(6):2191–201. https://doi.org/10.1152/jn.00126.2018 . - PubMed
  15. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–13. https://doi.org/10.1126/science.288.5464.306 . - PubMed
  16. Pan Z, Wang Z, Yang H, Zhang F, Reinach PS. TRPV1 activation is required for hypertonicity-stimulated inflammatory cytokine release in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2011;52(1):485–93. https://doi.org/10.1167/iovs.10-5801 . - PubMed
  17. Martínez-García MC, Martínez T, Pañeda C, Gallego P, Jimenez AI, Merayo J. Differential expression and localization of transient receptor potential vanilloid 1 in rabbit and human eyes. Histol Histopathol. 2013;28(11):1507–16. https://doi.org/10.14670/HH-28.1507 . - PubMed
  18. Bereiter DA, Rahman M, Thompson R, Stephenson P, Saito H. TRPV1 and TRPM8 channels and nocifensive behavior in a rat model for dry eye. Invest Ophthalmol Vis Sci. 2018;59(8):3739–46. https://doi.org/10.1167/iovs.18-24304 . - PubMed
  19. Acosta MC, Luna C, Quirce S, Belmonte C, Gallar J. Changes in sensory activity of ocular surface sensory nerves during allergic keratoconjunctivitis. Pain. 2013;154(11):2353–62. https://doi.org/10.1016/j.pain.2013.07.012 . - PubMed
  20. Li F, Yang W, Jiang H, Guo C, Huang AJW, Hu H, et al. TRPV1 activity and substance P release are required for corneal cold nociception. Nat Commun. 2019;10(1):5678. https://doi.org/10.1038/s41467-019-13536-0 . - PubMed
  21. Moreno-Montañés J, Bleau A-M, Jimenez AI. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin Investig Drugs. 2018;27(4):421–6. https://doi.org/10.1080/13543784.2018.1457647 . - PubMed
  22. Fakih D, Zhao Z, Nicolle P, Reboussin E, Joubert F, Luzu J, et al. Chronic dry eye induced corneal hypersensitivity, neuroinflammatory responses, and synaptic plasticity in the mouse trigeminal brainstem. J Neuroinflammation. 2019;16(1):268. https://doi.org/10.1186/s12974-019-1656-4 . - PubMed
  23. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2(2):322–8. https://doi.org/10.1038/nprot.2007.44 . - PubMed
  24. Bourin M, Hascoët M. The mouse light/dark box test. Eur J Pharmacol. 2003;463(1-3):55–65. https://doi.org/10.1016/S0014-2999(03)01274-3 . - PubMed
  25. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, et al. Coding of facial expressions of pain in the laboratory mouse. Nat Methods. 2010;7(6):447–9. https://doi.org/10.1038/nmeth.1455 . - PubMed
  26. Matsumiya LC, Sorge RE, Sotocinal SG, Tabaka JM, Wieskopf JS, Zaloum A, et al. Using the Mouse Grimace Scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. J Am Assoc Lab Anim Sci. 2012;51(1):42–9. - PubMed
  27. Joubert F, Acosta MDC, Gallar J, Fakih D, Sahel J-A, Baudouin C, et al. Effects of corneal injury on ciliary nerve fibre activity and corneal nociception in mice: a behavioural and electrophysiological study. Eur J Pain. 2019;23(3):589–602. https://doi.org/10.1002/ejp.1332 . - PubMed
  28. Franklin K, Paxinos G. The mouse Brain in Stereotaxic Coordinates. 3rd edition. San Diago: Academic Press; 2008. - PubMed
  29. Andreoli M, Marketkar T, Dimitrov E. Contribution of amygdala CRF neurons to chronic pain. Exp Neurol. 2017;298(Pt A):1–12. https://doi.org/10.1016/j.expneurol.2017.08.010 . - PubMed
  30. Simons LE, Moulton EA, Linnman C, Carpino E, Becerra L, Borsook D. The human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp. 2014;35(2):527–38. https://doi.org/10.1002/hbm.22199 . - PubMed
  31. Belmonte C, Aracil A, Acosta MC, Luna C, Gallar J. Nerves and sensations from the eye surface. Ocul Surf. 2004;2(4):248–53. https://doi.org/10.1016/S1542-0124(12)70112-X . - PubMed
  32. del Puerto A, Wandosell F, Garrido JJ. Neuronal and glial purinergic receptors functions in neuron development and brain disease. Front Cell Neurosci [Internet]. 2013; [cited 2020 Mar 24];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808753/ . - PubMed
  33. Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the purinergic signaling system. Neuroscience. 2019;405:137–47. https://doi.org/10.1016/j.neuroscience.2018.12.021 . - PubMed
  34. Semenova IB. Role of purinergic receptors in immune response. Zh Mikrobiol Epidemiol Immunobiol. 2016:107–19. - PubMed
  35. Burnstock G. Purinergic mechanisms and pain. Adv Pharmacol. 2016;75:91–137. https://doi.org/10.1016/bs.apha.2015.09.001 . - PubMed
  36. Klein K, Aeschlimann A, Jordan S, Gay R, Gay S, Sprott H. ATP induced brain-derived neurotrophic factor expression and release from osteoarthritis synovial fibroblasts is mediated by purinergic receptor P2X4. PLoS One. 2012;7(5):e36693. https://doi.org/10.1371/journal.pone.0036693 . - PubMed
  37. Madariaga-Mazón A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K. Mu-opioid receptor biased ligands: a safer and painless discovery of analgesics? Drug Discov Today. 2017;22(11):1719–29. https://doi.org/10.1016/j.drudis.2017.07.002 . - PubMed
  38. Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, et al. The endogenous cannabinoid system: a budding source of targets for treating inflammatory and neuropathic pain. Neuropsychopharmacology. 2018;43(1):52–79. https://doi.org/10.1038/npp.2017.204 . - PubMed
  39. König M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, et al. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature. 1996;383(6600):535–8. https://doi.org/10.1038/383535a0 . - PubMed
  40. Ji R-R, Gereau RW, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev. 2009;60(1):135–48. https://doi.org/10.1016/j.brainresrev.2008.12.011 . - PubMed
  41. Cummins TR, Sheets PL, Waxman SG. The roles of sodium channels in nociception: implications for mechanisms of pain. Pain. 2007;131(3):243–57. https://doi.org/10.1016/j.pain.2007.07.026 . - PubMed
  42. Du X, Gamper N. Potassium channels in peripheral pain pathways: expression, function and therapeutic potential. Curr Neuropharmacol. 2013;11(6):621–40. https://doi.org/10.2174/1570159X113119990042 . - PubMed
  43. Yang MH, Jung SH, Sethi G, Ahn KS. Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and inflammatory diseases. Molecules [Internet]. 2019; [cited 2020 Mar 22];24. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429077/ . - PubMed
  44. Docherty RJ, Yeats JC, Piper AS. Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br J Pharmacol. 1997;121(7):1461–7. https://doi.org/10.1038/sj.bjp.0701272 . - PubMed
  45. Kistner K, Siklosi N, Babes A, Khalil M, Selescu T, Zimmermann K, et al. Systemic desensitization through TRPA1 channels by capsazepine and mustard oil - a novel strategy against inflammation and pain. Sci Rep [Internet]. 2016 [cited 2020 Jul 23];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928060/ - PubMed
  46. Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, et al. Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol. 1992;107(2):544–52. https://doi.org/10.1111/j.1476-5381.1992.tb12781.x . - PubMed
  47. Rosen JM, Yaggie RE, Woida PJ, Miller RJ, Schaeffer AJ, Klumpp DJ. TRPV1 and the MCP-1/CCR2 axis modulate post-UTI chronic pain. Sci Rep. 2018;8(1):7188. https://doi.org/10.1038/s41598-018-24056-0 . - PubMed
  48. Grundy L, Daly DM, Chapple C, Grundy D, Chess-Williams R. TRPV1 enhances the afferent response to P2X receptor activation in the mouse urinary bladder. Sci Rep. 2018;8(1):197. https://doi.org/10.1038/s41598-017-18136-w . - PubMed
  49. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24. https://doi.org/10.1038/39807 . - PubMed
  50. Gunthorpe MJ, Benham CD, Randall A, Davis JB. The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci. 2002;23(4):183–91. https://doi.org/10.1016/S0165-6147(02)01999-5 . - PubMed
  51. Bianchi L, Driscoll M. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron. 2002;34(3):337–40. https://doi.org/10.1016/S0896-6273(02)00687-6 . - PubMed
  52. Holzer P. Acid-sensitive ion channels and receptors. Handb Exp Pharmacol. 2009:283–332. https://doi.org/10.1007/978-3-540-79090-7_9 . - PubMed
  53. Krishtal OA, Pidoplichko VI. A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience. 1981;6(12):2599–601. https://doi.org/10.1016/0306-4522(81)90105-6 . - PubMed
  54. Chen X, Belmonte C, Rang HP. Capsaicin and carbon dioxide act by distinct mechanisms on sensory nerve terminals in the cat cornea. Pain. 1997;70(1):23–9. https://doi.org/10.1016/S0304-3959(96)03256-3 . - PubMed
  55. Yang F, Zheng J. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. 2017;8(3):169–77. https://doi.org/10.1007/s13238-016-0353-7 . - PubMed
  56. Viana F, Voets T. Heat pain and cold pain. In: The Oxford Handbook of the Neurobiology of Pain [Internet]; 2018. [cited 2020 Mar 20]; Available from: https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190860509.001.0001/oxfordhb-9780190860509-e-13 . - PubMed
  57. Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S, Van Ranst N, et al. A TRP channel trio mediates acute noxious heat sensing. Nature Nature Publishing Group. 2018;555:662–6. - PubMed
  58. Kalangara JP, Galor A, Levitt RC, Felix ER, Alegret R, Sarantopoulos CD. Burning eye syndrome: do neuropathic pain mechanisms underlie chronic dry eye? Pain Med. 2016;17(4):746–55. https://doi.org/10.1093/pm/pnv070 . - PubMed
  59. Ikegami R, Eshima H, Mashio T, Ishiguro T, Hoshino D, Poole DC, et al. Accumulation of intramyocyte TRPV1-mediated calcium during heat stress is inhibited by concomitant muscle contractions. J Appl Physiol. 2019;126(3):691–8. https://doi.org/10.1152/japplphysiol.00668.2018 . - PubMed
  60. Meng ID, Barton ST, Mecum NE, Kurose M. Corneal sensitivity following lacrimal gland excision in the rat. Invest Ophthalmol Vis Sci. 2015;56(5):3347–54. https://doi.org/10.1167/iovs.15-16717 . - PubMed
  61. Stepp MA, Pal-Ghosh S, Tadvalkar G, Williams A, Pflugfelder SC, de Paiva CS. Reduced intraepithelial corneal nerve density and sensitivity accompany desiccating stress and aging in C57BL/6 mice. Exp Eye Res. 2018;169:91–8. https://doi.org/10.1016/j.exer.2018.01.024 . - PubMed
  62. Guzmán M, Miglio M, Keitelman I, Shiromizu CM, Sabbione F, Fuentes F, et al. Transient tear hyperosmolarity disrupts the neuroimmune homeostasis of the ocular surface and facilitates dry eye onset. Immunology. 2020;161(2):148–61. https://doi.org/10.1111/imm.13243 . - PubMed
  63. Yamazaki R, Yamazoe K, Yoshida S, Hatou S, Inagaki E, Okano H, et al. The semaphorin 3A inhibitor SM-345431 preserves corneal nerve and epithelial integrity in a murine dry eye model. Sci Rep. 2017;7(1):15584. https://doi.org/10.1038/s41598-017-15682-1 . - PubMed
  64. Stepp MA, Pal-Ghosh S, Tadvalkar G, Williams AR, Pflugfelder SC, de Paiva CS. Reduced corneal innervation in the CD25 null model of Sjögren syndrome. Int J Mol Sci. 2018;19(12). https://doi.org/10.3390/ijms19123821 . - PubMed
  65. Bourcier T, Acosta MC, Borderie V, Borrás F, Gallar J, Bury T, et al. Decreased corneal sensitivity in patients with dry eye. Invest Ophthalmol Vis Sci. 2005;46(7):2341–5. https://doi.org/10.1167/iovs.04-1426 . - PubMed
  66. Spierer O, Felix ER, McClellan AL, Parel JM, Gonzalez A, Feuer WJ, et al. Corneal mechanical thresholds negatively associate with dry eye and ocular pain symptoms. Invest Ophthalmol Vis Sci. 2016;57(2):617–25. https://doi.org/10.1167/iovs.15-18133 . - PubMed
  67. Murthy SE, Loud MC, Daou I, Marshall KL, Schwaller F, Kühnemund J, et al. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci Transl Med [Internet]. 2018; [cited 2020 Jan 14];10. Available from: https://stm.sciencemag.org/content/10/462/eaat9897 . - PubMed
  68. Fernández-Trillo J, Florez-Paz D, Íñigo-Portugués A, González-González O, Del Campo AG, González A, et al. Piezo2 mediates low-threshold mechanically evoked pain in the cornea. J Neurosci. 2020;40(47):8976–93. https://doi.org/10.1523/JNEUROSCI.0247-20.2020 . - PubMed
  69. Joubert F, Guerrero-Moreno A, Fakih D, Reboussin E, Gaveriaux-Ruff C, Acosta MC, et al. Topical treatment with a mu opioid receptor agonist alleviates corneal allodynia and corneal nerve sensitization in mice. Biomed Pharmacother. 2020;132:110794. https://doi.org/10.1016/j.biopha.2020.110794 . - PubMed
  70. Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol. 2011;24(6):577–83. https://doi.org/10.1097/WCO.0b013e32834c208d . - PubMed
  71. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84. https://doi.org/10.1016/j.cell.2009.09.028 . - PubMed
  72. Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 2018;39(3):240–55. https://doi.org/10.1016/j.it.2017.12.003 . - PubMed
  73. Pinho-Ribeiro FA, Verri WA, Chiu IM. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol. 2017;38(1):5–19. https://doi.org/10.1016/j.it.2016.10.001 . - PubMed
  74. Zhang J-M, An J. Cytokines, Inflammation and pain. Int Anesthesiol Clin. 2007;45(2):27–37. https://doi.org/10.1097/AIA.0b013e318034194e . - PubMed
  75. Kawabata A. Prostaglandin E2 and pain--an update. Biol Pharm Bull. 2011;34(8):1170–3. https://doi.org/10.1248/bpb.34.1170 . - PubMed
  76. Lacagnina MJ, Watkins LR, Grace PM. Toll-like receptors and their role in persistent pain. Pharmacol Ther. 2018;184:145–58. https://doi.org/10.1016/j.pharmthera.2017.10.006 . - PubMed
  77. Luo C, Kuner T, Kuner R. Synaptic plasticity in pathological pain. Trends Neurosci Elsevier. 2014;37(6):343–55. https://doi.org/10.1016/j.tins.2014.04.002 . - PubMed
  78. Nakagawa T, Wakamatsu K, Zhang N, Maeda S, Minami M, Satoh M, et al. Intrathecal administration of ATP produces long-lasting allodynia in rats: differential mechanisms in the phase of the induction and maintenance. Neuroscience. 2007;147(2):445–55. https://doi.org/10.1016/j.neuroscience.2007.03.045 . - PubMed
  79. Choi JY, Lee HY, Hur J, Kim KH, Kang JY, Rhee CK, et al. TRPV1 blocking alleviates airway inflammation and remodeling in a chronic asthma murine model. Allergy Asthma Immunol Res. 2018;10(3):216–24. https://doi.org/10.4168/aair.2018.10.3.216 . - PubMed
  80. Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15(8):1063–7. https://doi.org/10.1038/nn.3144 . - PubMed
  81. Ang S-F, Moochhala SM, MacAry PA, Bhatia M. Hydrogen sulfide and neurogenic inflammation in polymicrobial sepsis: involvement of substance P and ERK-NF-κB signaling. PLoS One [Internet]. 2011; [cited 2020 Mar 28];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171449/ . - PubMed
  82. Weatherby TJM, Raman VRV, Agius M. Depression and dry eye disease: a need for an interdisciplinary approach? Psychiatr Danub. 2019;31(Suppl 3):619–21. - PubMed
  83. Labbé A, Wang YX, Jie Y, Baudouin C, Jonas JB, Xu L. Dry eye disease, dry eye symptoms and depression: the Beijing Eye Study. Br J Ophthalmol. 2013;97(11):1399–403. https://doi.org/10.1136/bjophthalmol-2013-303838 . - PubMed
  84. Mecum NE, Demers D, Sullivan CE, Denis TE, Kalliel JR, Meng ID. Lacrimal gland excision in male and female mice causes ocular pain and anxiety-like behaviors. Sci Rep Nature Publishing Group. 2020;10:17225. - PubMed
  85. Corder G, Ahanonu B, Grewe BF, Wang D, Schnitzer MJ, Scherrer G. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science. 2019;363(6424):276–81. https://doi.org/10.1126/science.aap8586 . - PubMed
  86. Marsch R, Foeller E, Rammes G, Bunck M, Kössl M, Holsboer F, et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J Neurosci. 2007;27(4):832–9. https://doi.org/10.1523/JNEUROSCI.3303-06.2007 . - PubMed

Publication Types