Display options
Share it on

Antibiotics (Basel). 2021 Apr 03;10(4). doi: 10.3390/antibiotics10040378.

Novel Soil-Derived Beta-Lactam, Chloramphenicol, Fosfomycin and Trimethoprim Resistance Genes Revealed by Functional Metagenomics.

Antibiotics (Basel, Switzerland)

Inka Marie Willms, Maja Grote, Melissa Kocatürk, Lukas Singhoff, Alina Andrea Kraft, Simon Henning Bolz, Heiko Nacke

Affiliations

  1. Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany.

PMID: 33916668 PMCID: PMC8066302 DOI: 10.3390/antibiotics10040378

Abstract

Antibiotic resistance genes (ARGs) in soil are considered to represent one of the largest environmental resistomes on our planet. As these genes can potentially be disseminated among microorganisms via horizontal gene transfer (HGT) and in some cases are acquired by clinical pathogens, knowledge about their diversity, mobility and encoded resistance spectra gained increasing public attention. This knowledge offers opportunities with respect to improved risk prediction and development of strategies to tackle antibiotic resistance, and might help to direct the design of novel antibiotics, before further resistances reach hospital settings or the animal sector. Here, metagenomic libraries, which comprise genes of cultivated microorganisms, but, importantly, also those carried by the uncultured microbial majority, were screened for novel ARGs from forest and grassland soils. We detected three new beta-lactam, a so far unknown chloramphenicol, a novel fosfomycin, as well as three previously undiscovered trimethoprim resistance genes. These ARGs were derived from phylogenetically diverse soil bacteria and predicted to encode antibiotic inactivation, antibiotic efflux, or alternative variants of target enzymes. Moreover, deduced gene products show a minimum identity of ~21% to reference database entries and confer high-level resistance. This highlights the vast potential of functional metagenomics for the discovery of novel ARGs from soil ecosystems.

Keywords: antibiotic resistance genes; beta-lactam resistance; chloramphenicol resistance; fosfomycin resistance; functional metagenomics; soil; trimethoprim resistance

References

  1. J Biol Chem. 1985 Jan 10;260(1):392-9 - PubMed
  2. Antimicrob Agents Chemother. 2014;58(4):2281-8 - PubMed
  3. Cell Chem Biol. 2019 Apr 18;26(4):559-570.e6 - PubMed
  4. FEMS Microbiol Rev. 2004 Nov;28(5):519-42 - PubMed
  5. Rev Esp Quimioter. 2019 May;32 Suppl 1:37-44 - PubMed
  6. Appl Environ Microbiol. 2017 Aug 1;83(16): - PubMed
  7. Microorganisms. 2019 Aug 22;7(9): - PubMed
  8. Nature. 2014 May 29;509(7502):612-6 - PubMed
  9. Environ Int. 2019 Jul;128:233-243 - PubMed
  10. Microorganisms. 2020 Feb 16;8(2): - PubMed
  11. Virulence. 2014 Apr 1;5(3):443-7 - PubMed
  12. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 - PubMed
  13. PLoS One. 2015 Mar 17;10(3):e0120094 - PubMed
  14. Front Microbiol. 2018 Jan 17;8:2675 - PubMed
  15. Chembiochem. 2005 Apr;6(4):590-600 - PubMed
  16. Environ Microbiol. 2011 Apr;13(4):1101-14 - PubMed
  17. mBio. 2017 Aug 29;8(4): - PubMed
  18. Nat Commun. 2016 Apr 13;7:11257 - PubMed
  19. J Enzyme Inhib Med Chem. 2017 Dec;32(1):917-919 - PubMed
  20. Curr Opin Microbiol. 2005 Oct;8(5):525-33 - PubMed
  21. Appl Environ Microbiol. 2012 Mar;78(6):1708-14 - PubMed
  22. Biochim Biophys Acta. 2009 May;1794(5):769-81 - PubMed
  23. Methods Mol Biol. 2014;1123:1-26 - PubMed
  24. PLoS One. 2015 Feb 13;10(2):e0117594 - PubMed
  25. Molecules. 2017 Mar 15;22(3): - PubMed
  26. Front Microbiol. 2015 Apr 28;6:377 - PubMed
  27. J Paediatr Child Health. 2020 Jun;56(6):864-872 - PubMed
  28. Microbiome. 2018 Feb 23;6(1):40 - PubMed
  29. mBio. 2019 Jan 29;10(1): - PubMed
  30. Nat Biotechnol. 2019 Apr;37(4):420-423 - PubMed
  31. J Antimicrob Chemother. 2010 Feb;65(2):350-60 - PubMed
  32. Front Microbiol. 2019 Apr 26;10:892 - PubMed
  33. Ann N Y Acad Sci. 2013 Jan;1277:91-104 - PubMed
  34. Arch Microbiol. 2009 Dec;191(12):903-11 - PubMed
  35. Int J Mol Sci. 2018 Jul 30;19(8): - PubMed
  36. Plasmid. 2018 Sep;99:2-10 - PubMed
  37. Gut Pathog. 2019 Oct 14;11:47 - PubMed
  38. J Membr Biol. 2018 Feb;251(1):15-33 - PubMed
  39. FEMS Microbiol Ecol. 2011 Oct;78(1):188-201 - PubMed
  40. Nucleic Acids Res. 2010 Jan;38(Database issue):D57-61 - PubMed
  41. Antibiotics (Basel). 2016 Jun 03;5(2): - PubMed
  42. J Med Chem. 2010 Jan 14;53(1):221-9 - PubMed
  43. Microb Ecol. 2017 Feb;73(2):479-491 - PubMed
  44. Eur J Med Chem. 2020 Dec 15;208:112829 - PubMed
  45. Vet Res. 2001 May-Aug;32(3-4):261-73 - PubMed
  46. Curr Drug Targets. 2016;17(9):1029-50 - PubMed
  47. Int J Infect Dis. 2012 Feb;16(2):e104-9 - PubMed
  48. Front Microbiol. 2016 Dec 26;7:1985 - PubMed
  49. Antibiotics (Basel). 2013 Apr 16;2(2):217-36 - PubMed
  50. Antimicrob Agents Chemother. 2009 Nov;53(11):4673-7 - PubMed
  51. Biotechnol Lett. 2013 Feb;35(2):273-8 - PubMed
  52. Antimicrob Agents Chemother. 2009 Jan;53(1):242-8 - PubMed
  53. Cold Spring Harb Perspect Med. 2017 Feb 1;7(2): - PubMed
  54. Biochem Biophys Res Commun. 2014 Oct 17;453(2):254-67 - PubMed
  55. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 - PubMed
  56. Front Microbiol. 2019 Mar 07;10:460 - PubMed
  57. Cold Spring Harb Perspect Med. 2016 Aug 01;6(8): - PubMed
  58. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed

Publication Types

Grant support