Display options
Share it on

PeerJ. 2021 Apr 19;9:e11244. doi: 10.7717/peerj.11244. eCollection 2021.

Semidry acid hydrolysis of cellulose sustained by autoclaving for production of reducing sugars for bacterial biohydrogen generation from various cellulose feedstock.

PeerJ

Fatthy Mohamed Morsy, Medhat Elbadry, Yasser Elbahloul

Affiliations

  1. Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, Almadinah Almunawarah, Saudi Arabia.
  2. Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Assiut, Egypt.
  3. Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum, Fayoum, Egypt.
  4. Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Alexandria, Egypt.

PMID: 33976974 PMCID: PMC8061573 DOI: 10.7717/peerj.11244

Abstract

Cellulosic biowastes are one of the cheapest and most abundant renewable organic materials on earth that can be, subsequent to hydrolysis, utilized as an organic carbon source for several fermentation biotechnologies. This study was devoted to explore a semidry acid hydrolysis of cellulose for decreasing the cost and ionic strength of the hydrolysate. For semidry acid hydrolysis, cellulose was just wetted with HCl (0 to 7 M) and subjected to autoclaving. The optimum molar concentration of HCl and period of autoclaving for semidry acid hydrolysis of cellulose were 6 M and 50 min respectively. Subsequent to the semidry acid hydrolysis with a minimum volume of 6 M HCl sustained by autoclaving, the hydrolysate was diluted with distilled water and neutralized with NaOH (0.5 M). The reducing sugars produced from the semidry acid hydrolysis of cellulose was further used for dark fermentation biohydrogen production by

©2021 Morsy et al.

Keywords: Cellulose; Dark fermentation; Escherichia coli; Hydrogen gas; Polysaccharides; Semidry acid hydrolysis

Conflict of interest statement

The authors declare there are no competing interests.

References

  1. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 - PubMed
  2. Appl Microbiol Biotechnol. 2007 Dec;77(4):879-90 - PubMed
  3. Mol Biol Evol. 2002 Oct;19(10):1727-36 - PubMed
  4. Water Res. 2006 Feb;40(4):728-34 - PubMed
  5. J Bacteriol. 2000 Feb;182(4):974-82 - PubMed
  6. J Gen Appl Microbiol. 2008 Oct;54(5):243-52 - PubMed
  7. Bioresour Technol. 2020 Oct;313:123665 - PubMed
  8. Bioresour Technol. 2002 May;83(1):1-11 - PubMed
  9. Appl Microbiol Biotechnol. 2006 Nov;73(1):67-72 - PubMed
  10. Appl Environ Microbiol. 2005 Nov;71(11):7327-33 - PubMed
  11. J Biosci Bioeng. 2001;91(1):58-63 - PubMed
  12. Appl Microbiol Biotechnol. 2004 Oct;65(5):520-9 - PubMed
  13. Biotechnol Biofuels. 2015 Feb 15;8:23 - PubMed
  14. PLoS One. 2009;4(2):e4432 - PubMed
  15. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 - PubMed
  16. Bioresour Technol. 2012 May;111:180-4 - PubMed
  17. Annu Rev Plant Biol. 2010;61:263-89 - PubMed
  18. Int J Biol Macromol. 2021 Feb 1;169:564-582 - PubMed
  19. Bioresour Technol. 2010 Mar;101(6):1820-5 - PubMed
  20. Bioresour Technol. 2013 Jun;137:106-10 - PubMed
  21. Bioresour Technol. 2011 Sep;102(18):8628-34 - PubMed
  22. Front Chem. 2018 Apr 24;6:117 - PubMed
  23. Sci Total Environ. 2021 Apr 15;765:144429 - PubMed
  24. Mol Biol Evol. 1987 Jul;4(4):406-25 - PubMed
  25. Bioresour Technol. 2014 Sep;167:484-9 - PubMed
  26. Bioresour Technol. 2018 Jan;247:864-870 - PubMed
  27. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 - PubMed
  28. Appl Biochem Biotechnol. 2003 Spring;105 -108:505-14 - PubMed
  29. J Photochem Photobiol B. 2017 Apr;169:1-6 - PubMed
  30. Evolution. 1985 Jul;39(4):783-791 - PubMed

Publication Types